[DRAFT] Role-Based-Access-Control
(RBAC) Permission Notes

Perforce Professional Services

Version v2025.1, 2025-10-29

Table of Contents

DRAFT NOTICE
Preface
1. RBAC Intro
1.1. What is RBAC ?
1.1.1. Sample Schema
1.1.2. Sample Report
1.2. Problems RBAC Solves
1.3. Scanerios where RBAC may be beneficial
2. Implementation
2.1. Current status
2.2. Supporting Role Groups
2.3. Reporting
Appendix A: DRAFT NOTICE

© 00 1 1 N Ul Ul Ul R R W N

Preface -1 of 9

Todo Items

* Add scripts to demonstrate reporting RBAC permissions (likely using PAPHP and a webserver).
This allows some experimentation with RBAC without changing P4d.

* Add triggers or new broker functions to handle RBAC permissions. These could simply validate
RBAC rules are followed.

© 2007-2025 Perforce Software, Inc. 1

2 of 9 - DRAFT NOTICE

DRAFT NOTICE

ﬁ This document is in DRAFT status and should not be relied on yet. It is a preview of
a document to be completed in a future release.

2 © 2007-2025 Perforce Software, Inc.

Preface - 3 of 9
Preface

This document discusses some ideas on managing large complex Perforce permissions schemas
using Role-Based-Access-Control (RBAC) methods.

Perforce has a simple model of permissions utilizing users, groups, nested groups, and permissions.
While this structure is very flexible, it sometimes may get disorgnized when working with large
complex permission schema’s. This document proposes some additinal formalization of the existing
p4 groups into a RBAC model consisting of user groups and role groups, along with rules for their
useage.

Motavation: Many large Perforce sites often look for improved methods in
managing Perforce permissions. Some sites manage all user/groups/permissions in
an external tool and generate / import the entire protections table into P4d. Some

o sites manage all groups externally in MS Active Directory groups synced to
Perforce. However, these methods often lead to

This document adds some additional formal structure to the existing P4d
permission model simliar to RBAC methods used with Microsoft Active Directory.

The goal in these examples is to configure three LVM storage volumes separate from the OS volume
on a server destined to become a Helix Core server. At the start of this procedure, empty volumes
with no data are formatted.

Please Give Us Feedback

Perforce welcomes feedback from our users. Please send any suggestions for improving this
document or the SDP to consulting-helix-core@perforce.com.

In particular user groups are often found with nearly identical permissions assigned but no clear
reason why

© 2007-2025 Perforce Software, Inc. 3

mailto:consulting-helix-core@perforce.com

4 of 9 - Chapter 1. RBAC Intro

Chapter 1. RBAC Intro

Role-based-access-control (RBAC)

RBAC, or Role-Based Access Control, is a security method that restricts system access based on
a user’s role within an organization, rather than on their individual identity. It works by
assigning permissions and privileges to roles, which are then assigned to users, ensuring that
individuals only have access to the data and applications needed for their specific job function

1.1. What is RBAC ?

RBAC is a formalized method of controlling permissions assigned to users in a more structured way.

Instead of assigning permissions to users or groups in an ad-hock mannner, we we assign Users to
User Groups, User Groups to Role Groups, and Role Groups to Permissions.

We specifically avoid assigning Permissions directly to user. We also avoid any nesting of User
Groups within other User Groups.

Assignment Hiearchy:
Users->UserGroups->RoleGroups->Permissions

1.1.1. Sample Schema

For this example we use a Game Developer company that uses internal staff and external
contractors to fill many of the same roles. The internal and external staff are kept separated, but
may share many of the same roles. The GameEngine code contains modification shared across
several projects, so the folks editing the GameEngine are a subset of Developers.

This is a sample schema for Project1 containing several Roles and several User Groups .
Project1: Roles
Note that each Role gets permissions assigned.

* Proj1_CodeDev_Role - Development of the Game

* Projl1_GameEngineDev_Role - Modification of the Game Engine
* Proj1_Artist_Role - Art, 3d Models

* Proj1_AudioEngineer_Role - Audio tracks

* Proj1_BuildEng Role - Build automation
Projectl: User groups

Note that no permissions may be assigned, only roles. External groups are explicitly separated from
Internal. Typical assigned roles are shown.

4 © 2007-2025 Perforce Software, Inc.

Chapter 1. RBAC Intro -5 of 9

* Team1_Developers
> Projl_CodeDev_Role

> Projl_GameEngineDev_Role

Partnerl Dev_External
o Proj1_CodeDev_Role
e Team1_Artists

o Projl_Artist_Role

APAC_Art External

o Proj1_Artist_Role

1.1.2. Sample Report

Ultimately for this project, we could procedue an RBAC formatted representation of each project’s
permissions.

1.2. Problems RBAC Solves

Some of the issues commonly found with existing ad-hock permissions assignements are.

1. Discrete permissions are assiged directly to a user, leading to a collection of permissions
without any documentation of what each permission or group of permissions are for. Only the
Subject Matter Experts (SME’s) understand the permissions, not the IT folks assigning new
users to a group.

2. User groups are sometimes nested to pick up permissions of the parent group, however this
relationship is not often well displayed or understood and often leads to over assigning
permissions. In general we avoid the pernicious nesting of user groups within user groups.

3. Requests to add permissions are often (give new user X the same permissions as Y) without any
clear understanding of what those permissions are.

Microsoft guidance on Nesting of groups in Active Directory:
https://www.techtarget.com/searchwindowsserver/tip/Active-Directory-nesting-

o groups-strategy-and-implementation This "ADGLP" strategy allows 2 levles of
nesting, but since we don’t have a global context and are dealing with a single
project inside a Perforce instance our RBAC limits nesting to just User Groups as
subgroups of Role Groups and no further nesting.

1.3. Scanerios where RBAC may be beneficial

Adopting Perforce RBAC procedures as described here may be beneficial if.

1. Folks requesting permissions for new users don’t typically know the exact list of permissions
required. Often requests are made to provide permissions same as user X. RBAC gives names (
e.g Roles) to groups of permissions making it easier for folks to understand

© 2007-2025 Perforce Software, Inc. 5

https://www.techtarget.com/searchwindowsserver/tip/Active-Directory-nesting-groups-strategy-and-implementation
https://www.techtarget.com/searchwindowsserver/tip/Active-Directory-nesting-groups-strategy-and-implementation

6 of 9 - Chapter 1. RBAC Intro

2. Perforce permissions are often assigned by IT folks who are not Perforce experts. This follows
closely how Active Directory Roles are assigned for multiple corporate Roles, without IT
knowing the detailed permissiongs granted by the Roles. Perforce experts are involved with
creating or changing permissions in the Roles, but assigning them.

3. There are user groups in Perforce with very similar assignments of permissions , but no clear
understanding of why the differences exist.

Todo Items

1. Show a sample RBAC report output. See [Sampe Schemal].

2. Need a demo script that reports a basic RBAC Schema report. This could be simple command-
line canned report, or a php App.

6 © 2007-2025 Perforce Software, Inc.

Chapter 2. Implementation - 7 of 9

Chapter 2. Implementation

2.1. Current status

Currently there is no built-in suppportin P4d for RBAC roles, however these procedure use existing
p4d functionality by simply reporting RBAC permissions. Permission changes in an RBAC enabled
project that don’t meed the rules, are flagged or ignored. Some of these ideas could be supported
futher with triggers or broker scripts, especially if further interest is expressed.

Design note

The implementation discussed here uses procedures or scripts only to report the
Perforce Permissions in an enhanced RBAC Schema. The RBAC schema has slightly
stricter rules, but uses existing p4d commands. The design goal is that these

0 procedures do not intercept normal P4d permission operations. That is, initally
these procedures are designed to be fail-safe by simply reporting permission in an
RBAC manner, and simply reporting any RBAC schema violations. Later,
enforcement of RBAC schema could be added, but could easily disabled if no
longer needed.

2.2. Supporting Role Groups
To support the concept of Role groups we split the namespace of User groups into the following:

User Groups

» User groups contain only users and can’t be nested inside other user group.
» User groups are never assigned permissions directly
» User groups may be assigned as a subgroup of a Role Group to pick up permissions

Role Groups

* Role Groups never contain users
* Role Groups are assigned permissions

* Role groups have subgroups containing User Groups
So in effect we are enforcing some new procedures.

1. Permissions are never directly assigned to a user or group. We enforce ALWAYS creating a Role
for any single permission or group of permissions. This Role should have an clear name that
describes it’s function. This is an extra layey of inderection being imposed.

2. Other than a single level nesting of User Groups as subgroups of Role Groups there is no other

nesting allowed. User Groups may not be nested inside other User Groups as that is pernicious.

By following these rules, the permission schema is simplified so that most folks only ever need to
understand the limited set of Roles for the project. Only the Project SME’s need to understand the
permissions assigned to a Role and rarely change them.

© 2007-2025 Perforce Software, Inc. 7

8 of 9 - Chapter 2. Implementation
2.3. Reporting

The simplest reporting can be accomplished by command-line p4 scripts to report some of the
following:
* List Role groups
o List Role group and associated User (sub-groups), and effective permissions assigned.
* List User Groups
o List User Groups and associated Roles (and optionally a list of users assigned)

 List users in the project (belonging to at least one User Group in the project) and their assigned
Roles

8 © 2007-2025 Perforce Software, Inc.

Appendix A: DRAFT NOTICE -9 of 9

Appendix A: DRAFT NOTICE

ﬁ This document is in DRAFT status and should not be relied on yet. It is a preview of
a document to be completed in a future release.

© 2007-2025 Perforce Software, Inc. 9

	[DRAFT] Role-Based-Access-Control (RBAC) Permission Notes
	Table of Contents
	DRAFT NOTICE
	Preface
	Chapter 1. RBAC Intro
	1.1. What is RBAC ?
	1.1.1. Sample Schema
	1.1.2. Sample Report

	1.2. Problems RBAC Solves
	1.3. Scanerios where RBAC may be beneficial

	Chapter 2. Implementation
	2.1. Current status
	2.2. Supporting Role Groups
	2.3. Reporting

	Appendix A: DRAFT NOTICE

