SDP Windows to Linux Migration
Guide

Perforce Professional Services

Version v2025.1, 2025-06-04



Table of Contents

DRAFT NOTICE
Preface
1. Overview
2. Migration Planning
2.1. Plan for User Impact
2.2. Failover Migration
2.3. Custom Triggers and Extensions
2.4. Other Custom Automation on Windows Commit Server Machine
2.5. Depot Root and Depot Spec Map Fields
2.5.1. Sample Procedure to Prepare for Archive Replication
2.5.2. Remote Depots
2.5.3. Archive Depots
2.6. The journalPrefix
2.7. Find Incompatible Configuration Settings
2.7.1. Sample Procedure to replace PALOG configurable
2.7.2. Other Windows Paths in Configuration
2.8. Uncompressed Journals
2.9. Set Target P4D Version
2.9.1. If Windows P4D is 2019.1+
2.9.2. If Windows P4D is 2013.3 to 2018.2
2.9.3.If Starting P4D is 2013.2 or older
2.10. Avoid Case Sensitivity Conversion
3. P4 Topology
3.1. P4 Proxies
3.2. P4 Brokers
3.3. P4D Servers
3.3.1. Edge Servers
3.3.2. Filtered Replicas
3.3.3. Unfiltered Replicas
3.3.4. Standby Servers
3.3.5. Distribution Servers
3.3.6. P4 Code Review
3.3.7. P4 Authentication Service
3.3.8. PADTG
4. Preparation
4.1. Define Linux SDP Instance Name
4.2. Define Linux Replica on Windows Commit Server

4.3. Provision New Linux Server Machines

© © 00 00 0 I O O U1 b b b W DN =

S e e e S Y
N o OO O Ul Ul R R R R W W W W W R R R, O O O O



4.3.1. Select Operating System
4.3.2. Install P4 Software on Linux
4.4. Pull Archive Files to Linux
4.5. Define other Metadata Changes for Linux
4.6. DRY RUN
4.7. Craft Cutover Procedure
Appendix A: Sample Cutover Procedure
A.1. Sample Migration Scenario
A.2. One Week Prior to Cutover Procedure
A.3. One Day Prior to Cutover Procedure
A.4. Cutover Procedure
Appendix B: Why Migrate?
Appendix C: DRAFT NOTICE

17
18
18
19
19
20
21
21
21
21
22
24
25



DRAFT NOTICE - 1 of 25

DRAFT NOTICE

ﬁ This document is in DRAFT status and should not be relied on yet. It is a preview of
a document to be completed in a future release.

© 2007-2025 Perforce Software, Inc. 1



2 of 25 - Preface
Preface

This guide documents the process for migrating a P4 Server (P4D) service from a Windows server
machine to Linux. A migration can be minimally disruptive to users if planned and executed
properly. This document informs the planning and execution of a Windows to Linux migration.

Because P4D on Linux can run in the same case-insensitive mode that is familiar to users operating
on P4D on Windows, the migration can be nearly seamless to users. After preparation, the eventual
cutover is done with a p4 failover command in a scheduled maintenance window (or a series of
failovers if edge servers or filtered replicas are involved). A failover smoothly transitions the P4D
service from one machine (a Windows server machine in this case) to another (the Linux server
machine), with no loss of data and minimal disruption.

The preparation typically involves straightforward (though potentially long-running) tasks for the
administrator. If the Windows P4D runs with custom triggers or extensions, there will be a degree
of complexity depending on how complex those custom triggers and extensions are, and how they
are handled. Typical options for handing them include porting or ditching (temporarily or
permanently) the custom triggers or extensions. Aside from triggers and extensions, if any
additional custom automation operates on the Windows P4D server machine directly, similar
handling may be required.

Regardless of the effort and potential complexity handling customization (if any) for admins, the
migration can culminate in a nearly seamless transition for users.

Please Give Us Feedback

Perforce welcomes feedback from our users. Please send any suggestions for improving this
document to consulting-helix-core@perforce.com.

2 © 2007-2025 Perforce Software, Inc.


https://www.perforce.com/manuals/p4sag/Content/P4SAG/chapter.scripting.triggers.html
https://www.perforce.com/manuals/extensions/Content/Extensions/Home-extensions.html
mailto:consulting-helix-core@perforce.com

Chapter 1. Overview - 3 of 25

Chapter 1. Overview

A Windows to Linux Migration has these elements:

* Migration Planning

» Provision New Linux Server machines.

* Install Perforce P4 with SDP on Linux.

* Setup Linux Replica server spec on Windows.
* Define adjustments to configurables.

 Pull and verify archives. This may take a long while if there is a lot of data to pull, potentially
requiring multiple iterations of the pull/verify process.

* Do a Dry Run of the cutover.
* Port and/or Test Triggers

* Test, Test, Test in the Dry Run environment (which will later be the new Production
environment).

* Correct data issues identified in planning and during dry runs.
* Craft a Cutover Procedure.

¢ Execute the Cutover Procedure.

For purposes of this document, it does not matter if the servers are on-premises ("on-prem") or in a
private or public cloud environment such as AWS, Azure, or GCP.

Each of these components is covered in detail in this guide.

© 2007-2025 Perforce Software, Inc. 3



4 of 25 - Chapter 2. Migration Planning
Chapter 2. Migration Planning

It is helpful to review the related document SDP Migration and Upgrade Guide. This document
discusses a Big Blue Green Cutover (BBGC) style of migration. For a Windows to Linux migration,
use a special type of BBGC called a Failover Migration: After preparations are complete, a p4
failover completes the migration to Linux (or a series of failovers if edge servers are involved).

The Windows service may or may not be operated using Server Deployment Package (SDP) for
Windows. Regardless of whether the Windows service is managed with SDP, the Windows service is
largely left alone during the migration. The target environment will always be setup per best
practices as implemented with the Linux Server Deployment Package (SDP).

2.1. Plan for User Impact

The migration can be nearly seamless. Typical impacts to users (humans and automation/bots) for a
Windows to Linux migration include:

» Users may need to login again after the Linux server machine(s) becomes the live production
environment, depending on whether certain configurables like auth.id are adjusted during
migration.

 If SSL is enabled, users will need to trust the new Linux server machine(s) when they become
the live production environment.

* Depending on how user traffic is directed to the Windows server, there may be an impact:

o If users connect using a PAPORT that includes an an IP address, users will need to change
the PAPORT they use.

o If the failover plan involves changing a DNS name (as opposed to some instantaneous
method of traffic redirection), there will be delays associated with DNS changes and DNS
cache flushing. (The time required for a DNS change varies greatly across organizations, but
is typically predicable in any given organization.)

 If the migration is planned to include a change in authentication mechanism, e.g. standard
LDAP -~ SAML/SSO with the P4 Authentication Service (P4AS), users will need to adapt to this.

* There will be some amount of downtime for the scheduled cutover. This typically fits in a 2-
hour maintenance window, and in best cases can be as little as a few minutes. If the starting p4d
version is old (2018.2 or earlier) or ancient (2013.2 or earlier), a longer downtime may be
required if the data set is large.

Other than being aware of the above, users to not need to do any special preparation for the
cutover. For example, users do not need to be concerned about the state of files in their workspaces.
Whatever state files in workspaces are in at the time of cutover —checked out to default or
numbered pending changelists, shelved or not, etc. —is not affected by the cutover.

2.2. Failover Migration

This document focuses on the failover style strategy. This entails creating a server spec (ServerID)
for a standby of the commit server that we’ll call p4d_fs_linux, that will operate for a time as a

4 © 2007-2025 Perforce Software, Inc.


https://workshop.perforce.com/view/guest/perforce_software/sdp/main/doc/SDP_MigrationAndUpgradeGuide.html
https://workshop.perforce.com/view/guest/perforce_software/sdp/main/doc/SDP_Guide.Windows.html
https://workshop.perforce.com/view/guest/perforce_software/sdp/main/doc/SDP_Guide.Windows.html
https://workshop.perforce.com/view/guest/perforce_software/sdp/main/doc/SDP_Guide.Unix.html
https://github.com/perforce/helix-authentication-service

Chapter 2. Migration Planning - 5 of 25

Linux standby replica of the current production Windows commit server. Depending on various
factors such as data scale, project priority and complexity, etc. this Linux replica of the Windows
commmit server may operate for days, weeks or even months before it is ready for the planned and
scheduled failover that will promote the Linux standby server to become the new commit server.

This Failover strategy has several benefits:

* Minimum disruption to end users for the cutover.
* Allows for extensive testing of the new Linux server(s) and infrastructure prior to cutover.
* The effect on the original Windows server(s) and infrastructure is minimal.

* Rollback, while hopefully unnecessary, is straightforward.

While planning and preparation will take time and effort, the disruption to end users can be
minimal.

If your current method of operating P4D on Windows does not produce a regular
O metadata checkpoint, a change is required to get at least some basic form of
- checkpoint process in place. (If you are not sure what a checkpoint is, see: backup
and recovery concepts.)

The Failover strategy requires that the Windows P4D service be at version 2019.1 (latest patch) or
later. If it is not already at the latest patch available of 2019.1 or a later major version, see
[_combining_upgrade_with_migration].

2.3. Custom Triggers and Extensions

The largest single variable affecting effort for a Windows to Linux migration is effort dealing with
custom automation, such as triggers or extensions. This can be literally zero effort if there are no
custom triggers or extensions (or none that need to survive the migration). If porting and/or testing
is required, that becomes a software development and testing project on its own that folds into the
larger migration project.

Any custom triggers or extensions will need to be reviewed. Any that can’t be discarded will need to
evaluated for porting and testing needs.

Triggers written in a native Windows language such as batch or PowerShell, or operated as
compiled .exe files, will need to be ported. Even triggers written in more portable languages such as
Python or Per]l will need testing and may need adjustment to operate in the Linux environment.

Extensions are written in Lua, the interpreter for which is entirely contained in the p4d binary
itself. As such, custom extensions are less likely to require porting. However, they should still be
evaluated and/or tested to be sure they have no Windows OS dependencies in their
implementation.

Extensions provided by Perforce Software, such as those associated with P4 Code Review and the P4
Authentication Service, are inherently cross-platform and do not need to be ported.

O If it is acceptable to go without a particular for a time, porting of that trigger could
w
© 2007-2025 Perforce Software, Inc. 5


https://www.perforce.com/manuals/p4sag/Content/P4SAG/backup-recovery-concepts.html
https://www.perforce.com/manuals/p4sag/Content/P4SAG/backup-recovery-concepts.html
https://www.perforce.com/manuals/p4sag/Content/P4SAG/chapter.scripting.triggers.html
https://www.perforce.com/manuals/extensions/Content/Extensions/Home-extensions.html

6 of 25 - Chapter 2. Migration Planning

be deferred. In that case, the trigger would be disables during the cutover of the
Windows to Linux migration, and then re-add the trigger some time after on
Linux. Deferring can remove porting of some triggers from the critical path of the
migration project.

2.4. Other Custom Automation on Windows Commit
Server Machine

Determine whether you have any custom software that runs directly on the Windows commit
server machine. Custom automation that executes directly on the Windows server machine itself
needs to be evaluated for porting and testing needs.

Any automation that merely connects as a client to the Windows p4d server, such as build server
farms, need not be considered (other than possibly needing to login or trust p4d again and/or
possibly change the P4PORT, as noted in Section 2.1, “Plan for User Impact”). The Linux server
speaks the same protocol as Windows.

2.5. Depot Root and Depot Spec Map Fields

This section describes a change that must be done on the Windows commit server early in the
process, before a Linux standby replica can be setup.

o Read this section and be certain you are comfortable with the theory and
commands before making any changes to a live production system.

Depot specs on a P4 Server have a field named Map: that, if used, must be eliminated prior to the
deployment of Linux standby servers. This applies to depots that contained archive files to be
replicated, including depots of type local, stream, spec, extension, unload, tangent, and trait.

To list all of your depots and their types, run this command:

o

pd -ztag -F "%type% %name%" depots

For a Linux server to replicate archives from a Windows commit server, the server.depot.root
configurable must be set on the Windows commit server, and the Map: fields of all depots must be
changed to the default value.

Check to see if the server.depot.root configurable is set with:
p4 configure show server.depot.root

If that displays a value, then it is set. Otherwise it is not.

Next, check the Map: field of all depots with this command:

6 © 2007-2025 Perforce Software, Inc.



Chapter 2. Migration Planning - 7 of 25

p4 -ztag -F "%type% %name% %map%" depots

Ignore depots of type remote or archive.

If done carefully, the changes to set server.depot.root and clear the Map: field of
O each depot spec can be done non-disruptively on the live running Windows P4

- .
Service.

The key to making the adjustment to depot spec Map: fields and the server.depot.root configurable
non-disruptive is to understand that the p4d server will use the Map: field value if it is set to
anything other than the default, and otherwise will fall back to the server.depot.root configurable as
a default location, to find archive files for the given depot. If the value of the Map: field of any given
depot is TheDepotName/:-, that means the Map: field value is not explicitly set, and thus it will fall
back to using the server.depot.root configurable for that depot. If the value of the Map: field is
anything other then TheDepotName/---, then the Map: field value will be used to find archive files for
that depot.

Your goal in making the change is to make it so that, immediately as/after the depot spec is updated
to set the Map: field to its default value, the server.depot.root will cause the server to look in the
exact same physical location for versioned files. Thus, there is no point in time during the
procedure where the p4d server cannot locate its archive files, not even a nanosecond.

Before making changes, the singular server.depot.root value must be made to work for all existing
depots. Make the single server.depot.root path work without actually moving any versioned files
by using Windows directory symlinks. If individual depots are on different drives, put symlinks to
all depots in the directory pointed to by the server.depot.root configurable so that p4d can find all
depot files from that path. You may also find the Map fields use Windows UNC paths or if Windows
junctions.

2.5.1. Sample Procedure to Prepare for Archive Replication

You mission is to make it so all depots find there archive files using only the server.depot.root
configurable. Do whatever tricks with symlinks are needed to make it appear to the p4d server that
all depot storage directories appear under the directory referenced by the server.depot.root
configurable.

Victory looks like having the server.depot.root point to a single directory, say S:\P4Depots, and that
S:\P4Depots contains either a folder or a symlink for all other depots.

STEP 1: Review all Depot Specs

Examine the current server.depot.root value and the Map: field values for depots of all types other
than remote or archive. Start with:

p4 configure show server.depot.root
p4 -ztag -F "%type% %name% %map%" depots

© 2007-2025 Perforce Software, Inc. 7



8 of 25 - Chapter 2. Migration Planning

Get a sense for the any patterns. Do all depots have a non-default Map: field set? Do all depots
instead have the default Map: field value, and thus fall back to the server.depot.root setting?

STEP 2: Set server.depot.root

Choose an appropriate value for server.depot.root. If the server.depot.root configurable was
already set, it need not be changed.

STEP 3: Create Directory Symlinks
In the server.depot.root directory

EDITME: Add an example illustrating multiple depots with a mix of different Map: field values (and
some unset), and using MKDIR /D in the server.depot.root dir to create symlinks, EDITME: Add
reference to clear_depot_spec_Map_fields.sh.

2.5.2. Remote Depots

Depots of type remote, which are references to paths in entirely separate P4 Server data sets, are
unaffected by Windows to Linux migrations.

2.5.3. Archive Depots

Special planning is required if there are any depots of type archive containing digital assets
archived with p4 archive. Archive depots were intended to work removable storage, and removable
storage on Windows server machines will not likely be compatible with Linux server machines due
to file system differences. The most basic strategy is to p4 restore all archive revisions and then re-
archive them after the migration. This may require provisioning a different type of removable
storage device. Restoring before migration is the recommended approach unless it is not pragmatic
for some reason.

2.6. The journalPrefix

The Windows commit server must have the journalPrefix value set in order to set up the Linux
replica. It can be set to any value that works to enable the p4d service to find numbered journals
that have already been rotated. However, if no value is set at all, a value must be set before the
Linux replica can be setup.

In some cases, the journalPrefix is undefined as a configurable, but a journalPrefix is provided as
an argument to custom scripts that create checkpoints or rotate journals. In these cases, the
journalPrefix for the Windows commit server should be set to the same used in custom checkpoint
scripts.

In other cases, the journalPrefix is undefined, and so numbered/rotated journals (if there are any)
appear in the default location in the PAROOT directory. In these cases, an appropriate journalPrefix
value should be set immediately, with a value set so that journal land in an appropriate directory.

A sample command to set the journalPrefix is:

8 © 2007-2025 Perforce Software, Inc.



Chapter 2. Migration Planning - 9 of 25

p4 configure set journalPrefix=C:\P4Data\checkpoints\p4_1

2.7. Find Incompatible Configuration Settings

Using the p4 configure command to interact with db.config is a good way, and in many cases the
only way, to set various configuration items with a P4 Server. However, there are certain settings
that must not be defined with p4 confiqure, as they conflict with settings the SDP defines with shell
environment variables on Linux.

Review the output of the command p4 configure show allservers and see if any of the following are
set for the any config (the global defaults):

* P4JOURNAL

P4PORT

P4L0G

PATICKETS

PATRUST

If any of these are set with p4 configure, the migration plan will need to deal with unsetting them
after first ensuring they are set in some other way on the Windows service. Following is an
example of how to replace how P4LOG is set displays in the output of p4 configure show all
servers. Note that changing this requires a brief service restart to take effect.

2.7.1. Sample Procedure to replace P4LOG configurable

This is an example of to unset a P4LOG setting if it is set in such a way that it shows up with a p4
configure show allservers command. The goal is to unset the configurable, but replace it with a
Windows service setting so there is no effective change in the value used on Windows.

This sample assumes the Windows service name is Perforce and the p4 configure show allservers
output contained a setting of PALOG with a Windows path.

First, set the P4L0G setting and associate it with the Windows service name:
p4 set -S Perforce P4L0G=L:\p4logs\p4d.log

That will set the PALOG variable so that it is associated with the Windows service named Perforce.
Once that is done, it can be unset as a configurable, such as in this example:

pdd.exe -r E:\PerforceRoot "-cunset P4L0G"

Next, stop and then start the Windows service as you normally would.

o If the PALOG setting was set for the any config, and there are multiple servers in

© 2007-2025 Perforce Software, Inc. 9



10 of 25 - Chapter 2. Migration Planning

your topology, be sure to set the value for the Windows service on all p4d server
machines before unsetting the global default configurable.

2.7.2. Other Windows Paths in Configuration

Also scan the p4 configure show allservers output for other settings that contain Windows paths,
such as Structured Logs defined to reference a Windows path. Such things will need to be be
overridden in the server spec for the Linux replica. For example, if you see:

any: serverlog.file.11=E:\PerforceRoot\triggers.csv
You’ll want to create an override for the Linux replica by doing:

p4 configure set p4d_fs_linux#serverlog.file.11=/p4/1/1logs/triggers.csv

2.8. Uncompressed Journals

Examine how checkpoints and journals are currently taken in the Windows environment (or if they
are taken at all).

If journals on the Windows service are compressed, replication will not work. Replication requires
uncompressed journals.

One thing to check for is whether scripts call the p4d -jc or p4d -jd command with the -z option
(lowercase 'z"). If so, the '-z' should be changed to -7 (uppercase 'Z'). The lowercase -z compresses
both checkpoints and numbered journal files, and thus is not suitable for replication. The
uppercase -Z compresses the checkpoint file, but not the numbered journal files, and is intended
for replication. Other changes to custom scripts that manage checkpoints in the Windows
environment may be warranted.

2.9. Set Target P4D Version

Define the desired target P4D version. For illustration in this document, we will assume a target
P4D version of 2023.1; 2023.2 or later will also be appropriate.

2.9.1. If Windows P4D is 2019.1+
If the Windows P4D version is 2019.1 or later, there are two viable options to upgrading:

* The Windows infrastructure can be upgraded in place to the target P4D version immediately,
before the Linux replica is setup. This will require a service outage for the Windows service
early in the project, before the Linux replica is setup. Because the P4D version is 2019.1 or later,
upgrades will be relatively straightforward.

* Leave the Windows P4D version as it is. In this case, the plan should account for doing the P4D
upgrade in the Linux topology immediately after the failover that promotes the Linux server to

10 © 2007-2025 Perforce Software, Inc.



Chapter 2. Migration Planning - 11 of 25

be the commit server, in the same maintenance window (before testing and turning the system
over to users).

2.9.2. If Windows P4D is 2013.3 to 2018.2

If the starting P4D version is older than 2019.1 but at least 2013.3, the plan must account for first
upgrading the Windows service in place to the target version.

(r') A special upgrade procedure is required for upgrades that go to-or-thru P4D
- 2019.1.

As a general note, in all cases for P4D upgrades, a single "hop" is done, from the original P4D
version directly to the new target P4D version. That applies even if the starting P4D version is an
antique 1995.1 and the target version is a modern 2023.2. There is neither need nor value in
breaking the upgrade up into multiple steps. Upgrades that go thru certain major versions where
architectural changes were made (e.g. 2013.3, 2019.1, etc), additional and specific upgrade
procedures will be needed based on the starting and target P4D version.

2.9.3. If Starting P4D is 2013.2 or older
If the starting P4D version is older than 2013.3, a checkpoint replay is required.

Other strategies can be considered that would not require upgrading in place if avoiding an in-
place upgrade is a priority. That would entail longer downtime and other complexity. Such options
are not explored in detail in this document.

2.10. Avoid Case Sensitivity Conversion

Since this document is about Windows to Linux migrations, the data set will naturally and
necessarily be case-insensitive at the start of the project. This document does not discuss case
sensitivity change, as it is unnecessary for a Windows to Linux migration. If there is a desire to
become case-sensitive (for example, to support Linux clients), we advise deferring that as a
separate project to be done after the Windows to Linux migration is complete.

A Windows to Linux migration that preserves the original case-insensitive behavior, as described in
this document, is minimally disruptive. A case sensitivity conversion is best to defer until the
Windows to Linux migration, for several reasons:

* The conversion to case-sensitive can only be done on Linux.

 Case sensitivity conversion can be disruptive to users and workflows, and may result in data
loss (although data that will be lost will be known before the loss).

* Case sensitivity conversion requires significant downtime.

* Case sensitivity conversion requires duplication of 100% of versioned file storage (during
development and testing of the case conversion process on your data).

 Case sensitivity conversion may potentially disrupt tooling that interacts with your server.

Generally speaking a case sensitivity conversion is more complex than a Windows to Linux

© 2007-2025 Perforce Software, Inc. 11



12 of 25 - Chapter 2. Migration Planning

conversion, sufficiently so that we advise relegating case sensitivity conversion to a separate
project from the Windows to Linux migration. The case sensitivity conversion, if done at all, can be
started after the Windows to Linux migration is complete. The case sensitivity involves doing
neurosurgery on your P4 Server data set using the p4migrate utility.

Further discussion on case sensitivity conversions is outside the scope of this document.

12 © 2007-2025 Perforce Software, Inc.


https://ftp.perforce.com/perforce/tools/p4-migrate/p4migrate.html

Chapter 3. P4 Topology - 13 of 25
Chapter 3. P4 Topology

The complexity of a Windows to Linux migration project is naturally affected by the baseline
complexity of the P4 ecosystem operating on Windows.

Is your server a single machine, or are there many server machines? In any case, you’ll want to
think in terms of a "Big Blue/Green Deploy." Every active Windows server machine in the current
production topology (the "Blue" servers), including all replicas, edges, and proxies, will all need
equivalent Linux server machines to replace them (the "Green" servers). Replicas are
straightforward to handle. Handling edges and/or filtered replicas adds complex complexity to be
aware of.

Consider what P4 server machines and services exist in your Windows topology:

3.1. P4 Proxies

In some cases, Linux proxies will have existed with a Windows commit server all along, as running
proxies on Linux is advisable even in a topology with a Windows commit server (for some of the
same reasons that a Windows to Linux migration is popular, such as much faster native
filesystems).

Any Windows should be migrated to Linux as well. However, while strongly discouraged, a
Windows p4p (proxy) can remain in place with a Linux p4d server topology (so long as it operates
in case-insensitive mode, which we assume in this document).

3.2. P4 Brokers

P4 Brokers should be migrated to Linux as well. However, while strongly discouraged, a Windows
p4broker can remain in place with a Linux p4d server topology.

If brokers are configured with any custom software (broker "filter" scripts), porting this software to
Linux should be accounted for in planning.

3.3. P4D Servers

Every P4 topology will have exactly one commit server. If there is only a single server in the
topology, it is the commit server. It may have additional p4d servers that extend the topology.
Following are types of p4d servers (various types of replicas) and their implications for a Windows
to Linux migration:

3.3.1. Edge Servers

For purposes of a migration, edge servers should be classified into one of two categories:

* Edge servers that must survive the migration with workspaces intact.
* Edge servers that must survive the migration, but can lose all workspaces.

» Edge servers that can be discarded.
© 2007-2025 Perforce Software, Inc. 13



14 of 25 - Chapter 3. P4 Topology

For Windows edge servers that must survive with workspaces intact, a microcosm of the plan for
the commit server can be applied to the edge server. A Linux standby of the Windows edge server
can be configured and failed over to before the failover of the Windows commit server.

If there are no custom triggers, the failover of a Windows edge server to its Linux standby can done
far ahead of the failover of the Windows commit to its standby — days, weeks, or even months
ahead. However, if there are triggers, that generally means all Windows edges servers that must
survive with workspaces intact must be failed over to their Linux standbys in the same
maintenance window that the commit server is failed over to, e.g. minutes or hours before.

For Windows edge servers that must survive but for which workspaces are not needed (such as
edges that have no human users but service only automated build farms), those will require Linux
server machines, but will be created fresh in the Linux environment, with workspaces discarded
during the Cutover Procedure. These will be loaded with a standard checkpoint from the commit
server, albeit excluding edge-specific tables like db.have.

3.3.2. Filtered Replicas

Filtered replicas that must survive the migration are handled in the same way as edge that needs its
workspaces. That is, a Linux standby of the Windows filtered replica is setup and failover over to
ahead of the commit server failover.

Unlike edge servers, the filtered forwarding replica can always be failed over to long ahead of the
commit server, regardless of whether there are custom triggers (as triggers never fire on replicas).

3.3.3. Unfiltered Replicas

Unfiltered replicas are simply reseeded (loaded with a fresh checkpoint) during the Cutover
Procedure.

3.3.4. Standby Servers

Standby servers are simply reseeded (loaded with a fresh checkpoint) during the Cutover
Procedure.

3.3.5. Distribution Servers

A Windows to Linux migration has no impact to existing servers of type distribution-server.

3.3.6. P4 Code Review

P4 Code Review (formerly Helix Swarm) is essentially a client to the P4 Server, and as such is
largely unaffected by a Windows to Linux migration. It may possibly need to change the configured
P4PORT it uses to connect to the commit server, as noted in Section 2.1, “Plan for User Impact”). In
the case of P4 Code Review, this would involve updating its config.php and reloading the P4 Code
Review configuration.

14 © 2007-2025 Perforce Software, Inc.



Chapter 3. P4 Topology - 15 of 25
3.3.7. P4 Authentication Service

If the P4 Authentication Service (P4AS) has been deployed for the Windows commit server, it can be
left in place and will be entirely unaffected by and unaware of the Windows to Linux Migration.

Optionally, the HAS service can be moved onto the Linux commit server machine for easier
management.

3.3.8. PADTG

If the Perforce Defect Tracking Gateway (P4DTG) has deployed for the Windows commit server and
operates on a separate server machine, it can be left in place and will be entirely unaffected by and
unaware of the Windows to Linux Migration.

If PADTG operates on Windows, it could be migrated to Linux as well, or left in place. However,
while there are many compelling reasons to migrate a P4 Server to Linux, there is no inherent need
to migrate P4ADTG to Linux if it is stable and operating well on Windows (and is backed up reliably).
Migrating PADTG to Linux makes sense if normalization to an all Linux infrastructure is a goal.
Migrating PADTG to Linux could be done independently of, or as part of, the Windows to Linux
migration project.

© 2007-2025 Perforce Software, Inc. 15



16 of 25 - Chapter 4. Preparation

Chapter 4. Preparation

4.1. Define Linux SDP Instance Name

See the definition of Instance in SDP parlance.

Set the intended SDP instance name. For purposes of this document, we’ll use the SDP default
instance name of 1.

4.2. Define Linux Replica on Windows Commit Server

Reminder, setting a value for journalPrefix on the Windows commit server and dealing with the
server.depot.root must be done before setting up the Linux replica. See:
* Section 2.5, “Depot Root and Depot Spec Map Fields”

* Section 2.6, “The journalPrefix”
Address the above items before moving forward.

On the Windows commit server, create a server spec to represent p4d on Linux. Call it p4d_fs_linux.
Run this command:

p4 server p4d_fs_linux

Set these field values:

* ServerID: p4d_fs_linux

* Type: server

* Services: forwarding-standby

* Description: Linux replica of Windows commit server.
Next, determine a P4PORT value that can be used from the Linux replica server machine to
reference the Windows commit server. Getting this to work may entail opening a firewall rule on

the Windows commit server to ensure that the Linux server can reach it on whatever port p4d runs
on (often 1666).

p4 confiqure set p4d_fs_linux#PATARGET=_P4PORT_OF _WINDOWS_SERVER_FROM_LINUX

Then define other configurables with commands like these, to be run on your Windows commit
server:

p4 configure set p4d_fs_linux#db.replication=readonly
p4 confiqure set p4d_fs_linux#rpl.forward.all=1
p4 configure set p4d_fs_linux#rpl.compress=4

16 © 2007-2025 Perforce Software, Inc.


https://workshop.perforce.com/view/guest/perforce_software/sdp/main/doc/SDP_Guide.Windows.html#_instance

Chapter 4. Preparation - 17 of 25

p4 confiqure set p4d_fs_linux#server=4

p4 configure set p4d_fs_linux#fmonitor=2

p4 confiqure set p4d_fs_linux#serviceUser=svc_p4d_fs_linux

p4 configure set p4d_fs_linux#frpl.journalcopy.location=1

p4 confiqure set p4d_fs_linux#journalPrefix=/p4/1/checkpoints/p4_1
p4 confiqure set p4d_fs_linux#server.depot.root=/p4/1/depots

p4 confiqure set p4d_fs_linux#startup.1="journalcopy -i 0"

p4 confiqgure set p4d_fs_linux#startup.2="pull -i -L 1"

p4 confiqure set p4d_fs_linux#startup.3="pull -u -i 1"

p4 configure set p4d_fs_linux#startup.4="pull -u -i 1"

p4 confiqure set p4d_fs_linux#startup.5="pull -u -i 1"

p4 confiqure set p4d_fs_linux#startup.6="pull -u -i 1 --batch=50"
p4 confiqgure set p4d_fs_linux#startup.7="pull -u -i 1 --batch=50"
p4 confiqure set p4d_fs_linux#startup.8="pull -u -i 1 --batch=50"

Next, create the replication service user, and set a password for it (generate or think of a password
first):

p4 --field Type=service user -o svc_p4d_fs_linux | p4 user -f -i
p4 passwd svc_p4d_fs_linux

Store the password securely, however you store passwords (e.g. in some kind of password vault).

Next, add the svc_p4d_fs_linux user to a group name ServiceUsers, and ensure that group has a
Timeout value set to unlimited. Then add this line near the bottom of the Protections table:

super group ServiceUsers * //...

Once the above metadata change are complete, the Linux replica is defined. The next routine
checkpoint to be taken in the Windows environment will have the definition of the Linux replica
"baked in", and thus it can be used to seed the Linux replica.

4.3. Provision New Linux Server Machines

4.3.1. Select Operating System

As of this writing, the best options are:

Ubuntu 24.04 (preferred)

Ubuntu 22.04

Ubuntu 20.04

RHEL/Rocky Linux 9

RHEL/Rocky Linux 8

© 2007-2025 Perforce Software, Inc. 17



18 of 25 - Chapter 4. Preparation
4.3.2. Install P4 Software on Linux

On Linux server machines that do not yet have any P4 data, configure storage and install the SDP.
See Installing the SDP.

After generating the sdp_install.cfq file using the install_sdp.sh as documented, be sure to make
these changes in the sdp_install.cfq file:

o Set ServerID=p4d_fs_linux

» Set ServerType=p4d_replica

e Set CaseSensitive=0

4.4. Pull Archive Files to Linux

Once the Linux replica is setup, a variety of strategies can be used to transfer archive files.

Plan to execute about 3 iterations of p4verify.sh on Linux, to get p4d to pull the archives. The first
pass, starting with no archive files, is to start a bulk pull. That could take hours, days or weeks
depending on data scale. Also, it may need some nudging, clearing and resetting the replication
"pull queue."

The second to fill in gaps, and the 3rd pass should be clean.

Depending on scale of data, you may want to consider using outside-p4d mechanisms for
transferring some archives (especially the .gz files, ,v files should be transferred with p4 pull
ideally).

There are lots of variations on how to get the archives files there. This document focuses primarily
on using replication (i.e. replica startup.N threads calling p4 pull commands) for these reasons:

1. It has an advantage in that, if the Linux p4d writes an archive, it can always find it, even it it’s a
funky path with Unicode bytes in the path. By contrast, files copied outside p4d may not be
found by the Linux p4d if the path to the file (including the base filename and any directory in
the path) contain any high-byte, non-ASCII characters.

2. It can be throttled up or down (by configuring more or fewer startup.N threads and tuning
batching parameters).

3. Itis generally safe and non-disruptive to the production Windows environment.

4. It requires no special setup.
The above noted, for initial, first-time bulk pulls of Terabytes of data, a Windows port of rsync
might be considered for pulling .gz archives files (and only those). It may well pull bulk archives

faster than replication. However, rsync entails extra setup effort (not covered in this document),
and also has greater risk of impacting the production Windows environment.

A live running rsync daemon is required to run on Linux for the Windows port of
(f) rsync to talk to. For Linux to Linux transfers, the rsync utility does not require a
- live running rsync daemon, but one will be required for this scenario. The daemon

18 © 2007-2025 Perforce Software, Inc.


https://workshop.perforce.com/view/guest/perforce_software/sdp/main/doc/SDP_Guide.Unix.html#_installing_the_sdp

Chapter 4. Preparation - 19 of 25

service can be crafted with a configuration to land files in a location relative to a
depot root directory on Linux that mirrors the path relative to the depot root on
Windows.

There are many options here; somehow or other the goal is to get the archive files in place so
pdverify.shis happy.

4.5. Define other Metadata Changes for Linux

During the migration to Linux and the Server Deployment Package, a script should be crafted that
defines best practice configurables to be set during the cutover, immediately after the failover and
upgrade. The Linux server testing should be done with these best practices in place.

The SDP contains a configure_new_server.sh that defines best practices for a new server, mostly by
running many p4 configure set commands to set various configurables. This should not be used
exactly as it is because, as the name implies, it is intended for an entirely new server. However, it
should be used as a guide to develop a custom script specific to this migration. Typically the
procedure starts by creating a script named something like configure_THIS_server.sh, initially
copied from the stock SDP script configure_new_server.sh.

Then the configure_THIS_server.sh script is edited in light of the output of p4 configure show on the
commit server. Generally the editing involves:

* Remove code in the script that creates a spec and unload depots if those already exist or are not
desired.

* Remove setting any configurables that do not need to be set because they already are in the data
set.

* Remove setting any configurables that do not need to be set because a locally tuned value is
better for the environment than the script default.

* Adjust setting any configurables to desired values.
Ultimately, the goal of developing this script is to capture the results of the process of reviewing and
applying best practice configurables to the current data set. The script typically takes a few hours to

develop and review, but can be executed in mere seconds during the cutover. This script should be
exercised during the dry run and again for the Production Cutover.

4.6. DRY RUN

At least one Dry Run is required to confidently execute a migration. Plan to have at least one.

In the dry run, the p4 failover command is NOT used, nor is user traffic directed to the Linux
server. Instead, the Linux service is stopped, and the $P4R00T/server.id file is simply hand-edited to
be the ServerID the the commit server. Then the service is restarted.

At that point, the Linux commit server will believe itself to be the new commit server, even though
users will still be using the Windows server for real work. Then the Linux server can be tested in
various ways:

© 2007-2025 Perforce Software, Inc. 19



20 of 25 - Chapter 4. Preparation

» Test connectivity from all user access points.

» Test connectivity from all server access points, including replicas, proxies, and any integrated
systems such as Jenkins, Swarm, P4DTG, etc.

« If there are any ldap specs, ensure the targeted LDAP servers can be reached from the Linux
server. (This may require firewall adjustments).

* If the migration include a P4 Server upgrade, test the new version.

* If configurables were changed, do any testing warranted by the changes to configurables.

In addition to the value of exercising a procedure that is largely similar to the Production Cutover
procedure, the dry run procedure is useful in gathering timing info related to various steps in the
process. Endeavor to capture timing of key steps in the process.

After all Dry Runs are declared complete, the Linux server environment can be reset to be a replica
of the Windows environment once again, and the archive pull process repeated (which should be
much faster this time around, as most archives are in place).

4.7. Craft Cutover Procedure

Craft the Production Cutover procedure with lessons learned from the dry run(s).

20 © 2007-2025 Perforce Software, Inc.



Appendix A: Sample Cutover Procedure - 21 of 25

Appendix A: Sample Cutover Procedure

A.1. Sample Migration Scenario

The following is a sample cutover procedure for a topology with a commit server and an edge
server, with custom triggers that have been ported to Linux.

The sample instructions assume the perforce OS user on the Linux servers has been setup with the
proper shell environment, specifically that the ~/.bashrc has sourced the /p4/common/bin/p4_vars
file with the appropriate SDP instance parameter.

The preparation for this sample cutover scenario would have included:

* As set of ported and tested Linux custom triggers (replacing former custom triggers on
Windows) deployed on all Linux servers as /p4/common/site/bin/triggers folder.

* A triggers table suited for operation on the Linux server after it becomes the commit server.

A.2. One Week Prior to Cutover Procedure
STEP 1: Verify Replication

Verify that replication is healthy on the Linux replica, the Windows edge, and the Linux replica of
the Windows edge server.

A.3. One Day Prior to Cutover Procedure
STEP 1: Verify Replication

Verify that replication is healthy on the Linux replica, the Windows edge, and the Linux replica of
the Windows edge server.

STEP 2: Checkpoint Linux Replicas

On the Linux standby of the Windows commit server, and separately and in parallel on any Linux
standbys of Windows edge servers, request a checkpoint:

p4 admin checkpoint -Z

a Do a p4 info first and confirm that the target ServerID is that of the Linux edge
server, to avoid taking an unintentional "live checkpoint" of the commit server.

Next, on the Windows commit server, execute a journal rotation:

p4 admin journal

© 2007-2025 Perforce Software, Inc. 21



22 of 25 - Appendix A: Sample Cutover Procedure

Once this command has been run, it will trigger the Linux server to start taking a checkpoint. On
the Linux server, a checkpoint should immediately appear in the checkpoints directory.

(r) The checkpoints directory is '/p4/N/checkpoints' for the standby of the commit
- server, " /p4/N/checkpoints.ShortServerID

Monitor the checkpoints directory and await the appearance of a *md5 with the same number as
the checkpoint. The existence of the MD?5 file indicates the successful completion of the checkpoint
process.

Use the watch utility and wait until the *md5 file appears on the Linux standby of the Windows
commit:

watch -n 5 "cd /p4/1/checkpoints; 1s -1rt *.gz *.md5 | tail -5"

In parallel, use the watch utility and wait until the *md5 file appears on the Linux standby of the
Windows edge:

watch -n 5 "cd /p4/1/checkpoints.edge_syd; 1s -1rt *.gz *.md5 | tail -5"

STEP 3: Replay Checkpoint to offline_db.

On the Linux commit and edge servers, replay their local checkpoint files created in the prior step
into to the offline_db. This can be done regardless of whether the local p4d service is replicating or
even online at all. The replay to the offline_db is nether affected by nor disruptive to the p4d
service. It can be done on the commit and the standby in parallel, though can only be one on each
machine only after the checkpoint completes and the local *md5 file exists on the given machine.

nohup recreate_offline_db.sh < /dev/null > /dev/null 2>&1 &
Monitor until completion with:
tail -f $L0GS/recreate_offline_db.log

This preparation of the offline_db allows the Linux service to start operation with daily checkpoints
with a reasonably current offline_db. It may a day or so behind by the time the cutover occurs. (If
for some reason the cutover is postponed by more than a few days, repeat this procedure of
creating and replaying checkpoints on Linux to keep the offline_db reasonably current. Repeating
the procedure will replace the offline_db with a more recent checkpoint).

A.4. Cutover Procedure

STEP 1: Verify Replication

enlica. the Windows edoe
, the v WS eqge

13+ Viiiuy

22 © 2007-2025 Perforce Software, Inc.



Appendix A: Sample Cutover Procedure - 23 of 25

the Windows edge server.
STEP 2: Disabled Scheduled Tasks

On the old Windows commit and edge server machines, disable any Scheduled Tasks related to
backups or checkpoints. Also ensure no long-running checkpoint or backup operations are in
progress that won’t be complete by the time of the intended cutover.

STEP 3: Disable Crontabs

On the new Linux commit and edge server machines, save and then disable all crontabs intended
for routine production operation (and they may have been left on during dry runs).

STEP 4: Lockout Users with Protections
STEP 5: Stop Services

STEP 6: Start Services

STEP 7: Rotate Journal

STEP 8: Verify Replication

STEP 9: Failover Edge Server

STEP 10: Apply Metadata Changes for Linux
Apply metadata changes required for operation on Linux and commit server now being on SDP.
STEP 11: Failover Commit Server

STEP 12: Do Sanity Tests

STEP 13: Decide: GO/NO GO

STEP 14: Restore Default Protections

STEP 15: Direct User Traffic to Linux

STEP 16: Enable crontabs

© 2007-2025 Perforce Software, Inc. 23



24 of 25 - Appendix B: Why Migrate?
Appendix B: Why Migrate?

Migrations from Windows to Linux have been the single most consistent theme in Perforce
Consulting in over two decades, for many reasons. The procedures have evolved over time, with the
modern "failover style" replication being the latest in seamless cutover.

EDITME Add some of the many reasons.

24 © 2007-2025 Perforce Software, Inc.



Appendix C: DRAFT NOTICE - 25 of 25

Appendix C: DRAFT NOTICE

ﬁ This document is in DRAFT status and should not be relied on yet. It is a preview of
a document to be completed in a future release.

© 2007-2025 Perforce Software, Inc. 25



	SDP Windows to Linux Migration Guide
	Table of Contents
	DRAFT NOTICE
	Preface
	Chapter 1. Overview
	Chapter 2. Migration Planning
	2.1. Plan for User Impact
	2.2. Failover Migration
	2.3. Custom Triggers and Extensions
	2.4. Other Custom Automation on Windows Commit Server Machine
	2.5. Depot Root and Depot Spec Map Fields
	2.5.1. Sample Procedure to Prepare for Archive Replication
	2.5.2. Remote Depots
	2.5.3. Archive Depots

	2.6. The journalPrefix
	2.7. Find Incompatible Configuration Settings
	2.7.1. Sample Procedure to replace P4LOG configurable
	2.7.2. Other Windows Paths in Configuration

	2.8. Uncompressed Journals
	2.9. Set Target P4D Version
	2.9.1. If Windows P4D is 2019.1+
	2.9.2. If Windows P4D is 2013.3 to 2018.2
	2.9.3. If Starting P4D is 2013.2 or older

	2.10. Avoid Case Sensitivity Conversion

	Chapter 3. P4 Topology
	3.1. P4 Proxies
	3.2. P4 Brokers
	3.3. P4D Servers
	3.3.1. Edge Servers
	3.3.2. Filtered Replicas
	3.3.3. Unfiltered Replicas
	3.3.4. Standby Servers
	3.3.5. Distribution Servers
	3.3.6. P4 Code Review
	3.3.7. P4 Authentication Service
	3.3.8. P4DTG


	Chapter 4. Preparation
	4.1. Define Linux SDP Instance Name
	4.2. Define Linux Replica on Windows Commit Server
	4.3. Provision New Linux Server Machines
	4.3.1. Select Operating System
	4.3.2. Install P4 Software on Linux

	4.4. Pull Archive Files to Linux
	4.5. Define other Metadata Changes for Linux
	4.6. DRY RUN
	4.7. Craft Cutover Procedure

	Appendix A: Sample Cutover Procedure
	A.1. Sample Migration Scenario
	A.2. One Week Prior to Cutover Procedure
	A.3. One Day Prior to Cutover Procedure
	A.4. Cutover Procedure

	Appendix B: Why Migrate?
	Appendix C: DRAFT NOTICE

