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Introduction

 Introductions

 Class Schedule

 GUI vs. CLI

 P4Admin Demonstrations

 About the Exercises
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Course Contents

• Replication – Introduction

• Fully Distributed – Edge Servers 

• Advanced Maintenance

• Offline Checkpoints

• Broker

• Security

• Advanced Tools

• Scripting
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Notation used herein

 p4 command and flags or variables:

p4 –p port command –f flags

 Items of note in output

 Examples of commands in text

 Sample output:

$ p4 ping -c 1000 -s 5120000

2.24s for 1000 messages of 5120000 characters
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What is Replication?

 A separate Perforce Helix Server (p4d) instance which is 
continuously polling the master server for updates

• Duplicating server data, typically in real time

 Has its own metadata (db.*)

• can be filtered

• can be fully distributed (Commit/Edge later)

 Usually has its own set of Versioned Files

• can be filtered

• can be shared
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Why Replication?

 Disaster Recovery

• Possibly read-only

 Offloading intense server traffic

• Reports

• Builds

 Forwarding Replica (aka Smart Proxy)

 Edge / Commit server architecture (distributed working)
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Replication - Implementation

 Server-to-Server replication

• Asynchronous based on journal file

• Supports both Metadata-only and Full Replication

• No need for external scripts, complete solution

 Replicas must initially be seeded with a checkpoint 
(metadata) 

• Versioned files are required for full replication

- Can be copied before setup using OS commands (e.g. rsync/robocopy)

- Can be copied after setup using Helix Enterprise replication (p4 verify –qt)
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P4D P4D

Versioned 

files

(full set, filtered, or on-demand)

Replication Architecture – General

Fast
LAN

ReplicaMaster

Build server

DBsDBs

Versioned 

files

(full set)

WAN
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P4D

Replication Architecture – Detailed

db.*

Versioned 

files

journal

Master

db.*

pull

Versioned 

files

pull -u

Replica

state

rdb.lbr

P4D
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Overview of Replication Configuration

 In master repository:

• Define serverid for master

• Create server spec for replica (defines the server name)

• Create replica service user in master repo

- Assign to a group (for long timeout) and give super access

- Create a password for user

• Create other configurables for replica

 Create replica environment (directory structure etc)

• Define serverid for replica

 Checkpoint master, transfer to replica, and replay

 Login to master as replica service user to create ticket

 Start replica and monitor
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p4 pull

 Typically runs as a background task inside the replica 
server

 p4 pull –lj Shows metadata replication status

 p4 pull –ls Shows content transfer status

Command Effect

p4 pull Retrieve missing journal entries, then terminate (CLI)

p4 pull -i <N> Continuously pull every <N> seconds (server configurable)

p4 pull -u Retrieve missing file revisions, then terminate (CLI)

p4 pull -u -i <N> Continuously pull file revisions (server configurable)

p4 pull -l List missing file revisions or errors (CLI)

p4 pull -l [-j | -s] Replica reporting (CLI)
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How does ‘p4 pull’ keep track?

 state file

 Text file normally located in the replica P4ROOT directory

 Value/example:

 journal / offset

 104/28398

 Allows replication to be interrupted

 Master server can rotate journal file

 Configure journalPrefix if master uses journal prefix for checkpoints

 rdb.lbr database
 Binary file located in the replica P4ROOT directory

 Contains information on missing archive revisions
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Configuration

 ‘p4 pull’ is designed to be a background process

 Started from the replica server

 One process for retrieving metadata (>1 not allowed)

 Several processes to retrieve archive data (typically 2-4)
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Journal rotation and Prefix

 Master
 p4 admin checkpoint/journal [-Z] [prefix]

 Do not use –z, use –Z (uppercase)

 Compresses checkpoint but not rotated journal file

 If you use a prefix, must use the same prefix for ‘p4 pull’

 Recommended: Use ‘journalPrefix’ configurable instead (next slide)

 Replica
 p4 pull [–J prefix] [–i n]

 Journal will be rotated in sync with the master
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journalPrefix

 Specify journalPrefix configurable for the master to…

 Simplify checkpoint and journal rotation

 Avoid having to specify ‘p4 pull –J prefix’ in the replica(s)

 Specify journalPrefix configurable for the replica to…

 Automatically rotate journal to correct location when master rotates

 Help to prevent replica running out of disk space

 Without journalPrefix, replica will rotate journal in P4ROOT

p4 configure set repl_1#journalPrefix=/replica/checkpoints/repl_1

/replica/checkpoints/repl_1.ckp.100.gz

/replica/checkpoints/repl_1.jnl.101
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Prepare in the Master

> p4 configure set monitor=1

For server 'any', configuration variable 'monitor' set to '1'

> p4 configure set master#net.tcpsize=512k

For server ‘master', configuration variable 'net.tcpsize' set to '512k’

> p4 configure set repl_1#P4TARGET=master:1666

For server ‘repl_1', configuration variable 'P4TARGET' set to 'master:1666'
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P4DP4D

Prepare in the Master

any: monitor=1

master: net.tcpsize=512k

master: lbr.bufsize=64k

repl_1: P4TARGET=master:1666

repl_1: serviceUser=service

repl_1: db.replication=readonly

repl_1: lbr.replication=readonly

repl_1: startup.1=pull –i 0

repl_1: startup.2=pull –i 1 –u

server.id=master

any: monitor=1

master: net.tcpsize=512k

master: lbr.bufsize=64k

repl_1: P4TARGET=master:1666

repl_1: serviceUser=service

repl_1: db.replication=readonly

repl_1: lbr.replication=readonly

repl_1: startup.1=pull –i 0

repl_1: startup.2=pull –i 1 –u

checkpoint

server.id determines which configuration is active

p4 configure show allservers p4 configure show allservers

server.id=repl_1

restore
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Server environment settings

 Command line flags

• p4 configure set

• p4d -cset

 Environment variables

 (On Windows) registry variables
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Configuration parameters

Parameter Sample Values

P4TARGET svrmaster.example.com:1666

db.replication readonly

lbr.replication readonly

rpl.forward.all 1

serviceUser repl_1_svc

startup.1 pull –i 0

startup.2 pull –u –i 1

startup.3 pull –u –i 1
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Active Replication Monitoring (CLI)

 p4 pull –l [–j|-s]

 Reports pending transfers

 p4 verify [-t]

 Option -t schedules content transfer of missing/damaged revision

 p4 journaldbchecksums

 Run on master, check log on replica
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Naming Servers

• All Helix Enterprise servers should

• Be named

• Have server specifications

• p4 server servername

• Server names…
• Are used in replication and failover and other scenarios

• Define server capabilities

• Determine which configurables apply to a server

• Enforce security

• Require special service accounts for access by remote servers
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Naming Servers

 p4 serverid [serverID]

 p4d -xD [serverID]

 Sets/retrieves server.id file in server’s root directory

 Tells server which configurables apply to it

 P4NAME – Environment variable

 Required on Windows prior to 2015.2 release because server.id file is ignored.

 Overrides server.id file

 Not suggested for use on platforms other than Windows
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Server Specifications

 p4 server servername

 Creates or updates information 
about a server

 Specifies information about a 
server – the most important is 
the type (services it provides)

Type Definition

standard Standard Helix Server

replica Helix replica server

broker Helix Broker

proxy Helix Proxy

forwarding-replica Helix smart proxy

build-server Helix Build Server

commit-server Helix Commit Server

edge-server Helix Edge Server

P4AUTH Helix Authentication Server

P4CHANGE Helix Change Server
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Configurables and Named Servers

 p4 configure show

 Shows running configuration of queried server

 p4 configure show allservers

• Shows stored configurables for all servers

 Use ‘p4 configure set/show’ for named servers

 p4 configure show SERVERID

 p4 configure set SERVERID#variable=value

 p4 configure set repl_1#P4TARGET=192.168.1.1:1666

 p4 configure show repl_1
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Configurables and Named Servers

> p4 configure show

P4ROOT=. (-r)

P4PORT=9876 (-p)

P4JOURNAL=journal (default)

auth.default.method=perforce (default)

 p4 configure show repl_1

repl_1: P4TARGET = 192.168.1.1:1666

repl_1: P4TICKETS = /path/to/replica1/.p4tickets

repl_1: db.replication = readonly

repl_1: lbr.replication = readonly

repl_1: startup.1 = pull -i 1

repl_1: startup.2 = pull -u -i 1
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Service user

 Replication requires user of type service.

 This service user requires ‘super’ access.

 Add user to a group (e.g. service.g) group with unlimited timeout.

 On replica login as service user before starting replication

• Define P4TICKETS location for the replica on command line

• P4TICKETS should also be defined (same value) as a configurable for each server

set P4TICKETS=c:\p4\p4tickets.txt

p4 –u p4admin login repl_1_svc
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Replication set up – check master id

 Check master has a serverid

 p4 serverid

Server ID: master

 If necessary, set it:

• p4 serverid master

 Alternative:

• p4d –r . –xD
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Replication set up - master

 Set up the replica environment on the master server in metadata

 Create a server specification:

 p4 server repl_1

 Add   Services: forwarding-replica to the spec and save it

 Create a replica service user:

 p4 user -f repl_1_svc

 Add   Type: service to the spec and save it

 p4 passwd repl_1_svc
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Replication set up - master

 Add replica user to a group of service users (with no ticket timeout)

 p4 group service_users

 Add   repl_1_svc to the spec in Users:

 change Timeout: to unlimited 

 and save it

 Ensure group has super access:

 p4 protect

 Make sure there is a line with super group service_users present
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Replication set up - master

 Set variables for the replica in the master:

p4 configure set server=3

p4 configure set repl_1#P4TARGET=192.168.1.1:1666

p4 configure set repl_1#P4TICKETS=/path/to/.p4tickets

p4 configure set "repl_1#startup.1=pull -i 1"

p4 configure set "repl_1#startup.2=pull –u -i 1"

p4 configure set repl_1#db.replication=readonly

p4 configure set repl_1#lbr.replication=readonly

p4 configure set repl_1#serviceUser=repl_1_svc

p4 configure set repl_1#server.depot.root=/path/to/replica/depots
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Replication set up - master

 Verify settings on master:

> p4 configure show repl_1

repl_1: P4TARGET = 192.168.1.1:1666

repl_1: P4TICKETS = /path/to/replica/.p4tickets

repl_1: db.replication = readonly

repl_1: lbr.replication = readonly

repl_1: startup.1 = pull -i 1

repl_1: startup.2 = pull -u -i 1

repl_1: serviceUser = replica_svc_user

repl_1: server.depot.root = /path/to/replica/depots

 All okay?  Take a checkpoint of the master (or rotate journal):

p4 admin checkpoint -Z



33

Replication set up - replica

 Setup environment on replica host (P4ROOT dir, P4LOGS, P4JOURNAL, binaries etc)

 Copy the checkpoint to the replica and restore

• If you just rotated the journal on the master, then copy previous checkpoint and all rotated 
journals since then to replica and restore (this is a good option if a checkpoint takes many hours 
to run)

 Create the server.id file on the replica (in $P4ROOT dir):

p4d –r . –xD repl_1

Perforce server info:

Server ID: repl_1
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Replication set up - replica

 Log into the master from replica machine (with same value in 
P4TICKETS environment variable as is in relevant configurable):

export P4TICKETS=/path/to/replica/.p4tickets

p4 –p master-host:1666 –u repl_1_svc login

 Start the replica
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Replication set up - replica

 Replication is working:
> p4 –p replica-host:1666 pull -lj

Current replica journal state is:       Journal 2,      Sequence 683.

Current master journal state is:        Journal 2,      Sequence 683.

The statefile was last modified at:     2014/10/30 14:27:56.

The replica server time is currently:   2014/10/30 14:28:38 -0700 PDT

> p4 -p master-host:1666 journaldbchecksums

Perforce server info:

Table db.config checksums match. 2I li014/10/30 14:33:41 version 1: expected

Perforce server info:

Table db.counters checksums match. 2014/10/30 14:33:41 version 1: expected

Perforce server info:

Table db.nameval checksums empty. 2014/10/30 14:33:41 version 1: expected
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Replication set up - troubleshooting

 Common errors:

• Login ticket not set correctly

• Permissions for replica user not correct

• Typos in configuration parameters

 Look for errors in replica and master log files

tail -50 /path/to/master/log

tail -50 /path/to/replica/log

grep -2 "Perforce server error:" /path/to/master/log

grep -2 "Perforce server error:" /path/to/replica/log
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Replication *live*

 Replication really is quite easy to configure

 But you need to be precise and accurate

 Carefully plan and review all configurables before taking a checkpoint of 
master to seed replica with

 If you make a mistake and have to change configurables, consider 
rotating master journal copying only that across

 Demo: Setup and install a forwarding replica
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Exercises

Lab Set E1: Replication

New commands in this chapter:
 p4 configure set SERVERID#variable=value

 p4 configure show allservers

 p4 pull

 p4 pull –l [-j | -s]

 p4 journaldbchecksums

 p4 verify –t

 p4d –xD

 p4 server
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P4D P4D P4D

Replicas for HA and DR

All DataMetadata only

LifeboatMaster HA_Replica

DBsDBsDBs

Versioned 

files

(full set)

Versioned 

files

(On a filer  e.g. NFS)

WAN
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Prepare in the Master

ServerID: Replica1

Name: Replica1

Type: server

Services: forwarding-replica

p4 server Replica1

p4 configure set Replica1#db.replication=readonly

p4 configure set Replica1#lbr.replication=readonly

Equivalent value set via ‘p4 server’ specification:
p4 configure set Replica1#rpl.forward.all=1
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Replica filtering

 To exclude entire tables from a replica:

p4 pull -T db.have,db.client

 Detailed Filtering:

ServerID: Replica1

:

ClientDataFilter:

-//site2-ws-*

ArchiveDataFilter:

//....c

-//....mp4

p4 server Replica1 p4 configure set 

"Replica1#startup.1=pull -i

30 -P Replica1"
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Edge/Commit Server Architecture

Commit

Edge

Changes and 
other metadata

Metadata from Commit
Local Workspace metadata
Archive files
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Edge/Commit Server Architecture

Commit

Edge Edge
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Prepare in the Master

ServerID: Edge1

Name: Edge1

Type: server

Services: edge-server

p4 server Edge1

p4 configure set Edge1#db.replication=readonly

p4 configure set Edge1#lbr.replication=readonly

Equivalent value set via ‘p4 server’ specification:
p4 configure set Edge1#rpl.forward.all=1
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Configuring Edge workspaces

Client: build-ws-9201

:

ServerID: Edge1

View:

:

p4 client build-ws-9201
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Edge/Commit Considerations

 Edge servers contain locally-unique data

• Generally require backup/recovery

 Information is distributed

• You may need to interrogate all edge servers

 Forwarding replicas are simpler

• Address many needs

• large db.have is better handled with Edge servers

 Overall user performance is better with Edge servers
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Build-Edge/Commit Considerations

 Edge servers for build farms don’t generally require backup

 Build data is inherently transient

 Faster to rebuild from master than to rebuild from scratch

• Workspaces stored on master

• ‘Have’ data stored local to Edge

• Local ‘have’ data not valuable after build is complete
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Exercises

Lab set E2: Forwarding and edge server
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Topics

 Recover a Stored Spec Revision

 Lazy Copies

 Archive/Restore
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Spec Depot

 Goal

• Recover specs such as clients and protection table 

• Keep history of changes to specs

• Identify user who changed a spec

 Implementation

• Separate spec depot automatically maintained by Helix Enterprise

• Specs are stored as form files, which can be printed or synced

- Grouped into directories by type, such as client or label
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Spec Depot Usage

 Spec depot stores specs like clients and protection table 
(not change)

 Tracing of changes by a user

p4 print -q //specs/label/lastbuild.p4s#1

# The form data below was edited by bruno

 Optional: controlling which specs are versioned

p4 depot specs

SpecMap:

//specs/...

-//specs/client/build_ws_*
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Recovering a Stored Spec Revision

 List revisions in the spec depot
p4 filelog //specs/client/bruno_ws.p4s

... #4 default change edit on 2014/11/01

... #3 default change edit on 2014/10/17

... #2 default change edit on 2014/07/01

... #1 default change add on 2013/11/20

 Display content of revisions

p4 print -a //specs/client/bruno_ws.p4s

 Replace spec with earlier version

p4 print -q //specs/client/bruno_ws.p4s#3 | p4 client -i
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Branching and Lazy Copies

 Files branched or copied only create metadata in the db

• Retain reference to original file location  lazy copy

Workspace Database Depot storage

1 2

1

main/file.txt

rel1/file.txt

main/file.txt,v
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Lazy Copies and Snap

p4 fstat –Oc //depot/Jam/REL2.0/src/jam.c

...

... lbrFile //depot/Jam/MAIN/src/jam.c

... lbrRev 1.30

... lbrType text

... lbrIsLazy 1

(undocumented)
p4 snap //depot/Jam/REL2.0/src/jam.c

//depot/Jam/REL2.0/src/jam.c#1 – copy from //depot/Jam/MAIN/src/jam.c 1.30
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After Snap

 Files in the depot storage are duplicated

 Useful when cleaning up depots with obliterate

Workspace Database Depot storage

1 2

1

main/file.txt

rel1/file.txt

main/file.txt,v

rel1/file.txt,v
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Archiving and Restoring

 Goal:

• Free up space in active depots

• Speed up backup and verify

• Preserve history

• Simple restore

 Implementation:

• Separate archive depots (typically located on cheap storage)

• Files can be archived and restored at individual revisions
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Archiving and Restoring

 Files not branched can be archived

• Requires at least one depot of type archive

• Preserves history 

p4 archive –D archives //assets/...

 To archive files stored in delta format, use the -t option.

p4 archive –D archives –t //assets/text/readme.txt#9,9

 Restore files as needed

p4 restore –D archives //assets/images/myimage.jpg#3
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Archiving – Listing and Purging

 Files in original depot are marked as archive

p4 files //assets/...

//assets/images/myimage.gif#1 - archive change 865 (ubinary)

...

 List files in archive depot 

p4 files –A //archives/...

//archives/assets/images/myimage.gif#1

...

 Purge unneeded archived files (cannot be undone)

p4 archive –D archives –p //assets/...@2012/01/01
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Exercises

Lab Set E3: Advanced Maintenance

New commands in this chapter (samples):

 p4 archive

 p4 restore

 p4 snap (undoc)
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Topics

 Offline Checkpoints

• Usage

• Upgrades

• Switch offline_db/root
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Offline Checkpoint

 Goal

• Checkpoint without any downtime

• Easy and fast recovery

• Optional: regular database restoration

Restored databases are smaller than original, but contain equivalent data

(Removes empty data pages and rebalances the b-tree indexes)

 Implementation

• Separate offline database created from checkpoint

• Regular updates through rotated journal

• Offline database dumped into checkpoint
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Prep Offline Checkpoint – Create Seed

p4d –r /p4/1/root –jc –Z /p4/1/checkpoints/p4_1

/p4/1/root

Database
Live journal

p4_1.ckp.100.gz jnl.99

/p4/1/checkpoints
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Prep Offline Checkpoint – Apply Seed

/p4/1/offline_db/p4/1/root

Database
Live journal

p4_1.ckp.100.gz jnl.99

/p4/1/checkpoints

Database

p4d -r /p4/1/offline_db -jr -z /p4/1/checkpoints/p4_1.ckp.100.gz
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Offline Checkpoint

 Nightly:

• Truncate journal on live database

p4d –r /p4/1/root –J /p4/1/logs/journal –jj /p4/1/checkpoints/p4_1

• Restore journal to offline directory

p4d –r /p4/1/offline_db –jr /p4/1/checkpoints/p4_1.jnl.100

• Dump the offline database to make a new checkpoint

p4d –r /p4/1/offline_db –jd –z /p4/1/checkpoints/p4_1.ckp.101.gz
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Offline Checkpoint

/p4/1/offline_db/p4/1/root

Database
Live journal

p4_1.ckp.100.gz jnl.99

/p4/1/checkpoints

Database

jnl.100

Truncate journal
-jj

p4_1.ckp.101.gz

Restore journal
-jr

Dump checkpoint
-jd
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Recreate Offline Database

 Recreate the offline database from the new checkpoint

rm –f /p4/1/offline_db/db.*

p4d –r /p4/1/offline_db –jr -z /p4/1/checkpoints/p4_1.ckp.101.gz
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Switch Offline Database/Root

 Stop the production server

 Rotate the journal

 Replay the journal to the offline_db

 Move /p4/1/root/db.* /p4/1/root/save/

 Move /p4/1/offline_db/db.* /p4/1/root/

 Restart the master server

 Delete the files in /p4/1/root/save/

 Recover the most recent checkpoint into /p4/1/offline_db

 Recover the journals following the checkpoint into /p4/1/offline_db

 Dump a checkpoint from /p4/1/offline_db

 Recreate the offline database from the new checkpoint
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Exercises

 Lab Set E4:  Offline Checkpoints
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P4Broker

 Intercepts all incoming Helix Enterprise commands

 Command handling support:

• Redirection

• Blocking

• Rewriting (undocumented)

 Great for notifying users when the server is down for maint.

 Sometimes used as part of HA/DR strategies to avoid DNS 
change delay.
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P4Broker Use Cases

 Policy Customizations

• different capabilities than triggers

 Traffic Redirection for Load Distribution

• not “load balancing”

 Traffic Redirection for execution of automated failover 
operations

• advanced/custom usage
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BROKERP4D

Helix Broker

command: opened

{

flags        = -a;

action      = reject;

message = "Not admin";

}

P4Broker.config

DBs

Versioned 

files

Build server
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Redirection

 Selective – The default setting

• Redirection allowed, but after the first command in a session hits the 
default server, all others in the same session use the default server and 
are not redirected.

 Pedantic – All redirected commands are redirected

• Can cause the GUI to not update the icons correctly.
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Filter Scripts

 When the action for a command handler is “filter”:

• Broker executes the program or script

• Performs the action returned by the program.

 Broker invokes filter program

 Passes in all the information about the command via stdin.

• Filter program must read data from stdin before additional processing.

 The filter program responds on stdout with one of these:

• action: PASS/REJECT/REDIRECT/RESPOND

• message: Some message for the user
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Mechanics: Helix Broker Setup

 Define an operating server.

 Generate a preliminary broker configuration file.

 Adjust the broker configuration to your needs.

 Set broker config file location.

 Initiate as a Windows service or Unix/Linux daemon.

 Documentation:

• Latest Release Helix Broker Notes

• Multi-Site Deployment Manual
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Exercises

 Lab Set E5:  P4Broker
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Setting Server Security Level

 Security settings determine how

Helix Server enforces passwords

 Display security counter value

p4 configure show security

security=3 (configure)

 Set security counter

p4 configure set security=3

0 No password required, 

any password allowed (default)

1 Strong password is required,

can be stored in Windows registry

2 Strong password is required,

cannot be stored in registry

3 p4 login tickets only,

no password stored anywhere

4 Level 3 + Edge, replica, proxy & brokers

must connect using a service user
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Server Security

 Server security levels (0-4)

• p4 configure set security=4

 Turn off auto user creation; require authorization for user list

• p4 configure set dm.user.noautocreate=2

• p4 configure set run.users.authorize=1

 Set changelists to restricted by default

• p4 configure set defaultChangeType=restricted
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Connection Protocols

 TCP

• Default protocol

P4PORT=tcp:p4server:1666

 RSH

• Starts up the server for each request

• Useful for testing and inetd support

P4PORT=rsh:/usr/local/bin/p4d –r $P4ROOT –L $P4LOG -i

 SSL

• SSL encrypted connection when using “ssl:” prefix

P4PORT=ssl:p4server:1667
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RSH connection

 Starts up a server on client request

 No TCP/IP connection to server

• Uses stdout/stdin bound to client (with -i option)

 Usage examples:

• Sidetrack server (specify different log file)

• Test environments (P4Python, P4Ruby, P4Perl)
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SSL Encryption

 Helix Server, Helix Proxy, Helix Broker

 Consider implications with 3rd party integrations

 If enabled, all clients require SSL connection.

• Run two P4Ds to offer SSL and non-SSL (one with “ssl:”, one without)

 Client needs fingerprint in its P4TRUST file

p4 trust
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p4 trust

 Client-side command for handling fingerprints

 Uses P4TRUST environment variable (default 
$Home/.p4trust)

p4 trust –h

p4 trust –y Accept the fingerprint

p4 trust –n Reject the fingerprint

p4 trust –f Force overwriting of the fingerprint

p4 trust –l List accepted fingerprints

p4 trust -d Delete a fingerprint
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SSL Setup

 P4SSLDIR -> directory with key and certificate

cd $P4ROOT

mkdir ssl # optionally create config.txt

chmod 700 ssl # drwx------

export P4SSLDIR=ssl

p4d –r . -Gc # key and certificate

p4d –r . –p ssl:1667

 Client needs to accept fingerprint

p4 –p ssl:p4server:1667 trust -y
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 Use P4Broker

• P4D runs with SSL encryption enabled

• P4Broker itself runs unencrypted

• Allows phasing-in of encrypted connections

P4D BROKER

Phasing-in SSL encryption with P4Broker

encrypted unencrypted

P4 Client
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Exercises

Lab Set E6: Security

New commands in this chapter:

 p4d –Gc

 p4 trust
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Advanced Tools

 perfmerge

 perfsplit

 p4-migrate

 Checkpoint surgery

 Conversions – ftp://ftp.perforce.com/perforce/tools

ftp://ftp.perforce.com/perforce/tools
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perfmerge

 Goal

• Merge two Helix Servers into a single Helix Server

 Implementation

• Perfmerge tool reads both databases

• Choice on change merging

- Append

- Intersperse and order in time

- Append with offset
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perfsplit

 Goal

• Extract data from a main server with its exact revision history

• Split a Helix Server into two separate Helix Servers

 Implementation

• Perfsplit reads directly from an existing Helix Server

• It uses a splitmap to determine which files are split

- Same syntax as the label view map

• Only creates metadata, depot files need to be copied separately

• You should run “p4 snap” on the directory or directories being split first
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p4migrate

 Goal

• Migrate a Helix Server from a case-insensitive to a case-sensitive 
platform

 Implementation

• Reads a checkpoint to find case inconsistencies

• Generates a case-fix map 

• Use the map to correct the checkpoint

• Once the checkpoint is case-consistent it can be used for migration

• Tool can also be used to rename depot paths

• Migration from case-sensitive to case-insensitive is not supported
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Checkpoint/Journal Format

 Text file containing journal records

 Each record has a type

• Checkpoint only has @pv@ entries

 Strings are surrounded by @ symbol

 Each value record refers to

• A database table

• The table version

 http://www.perforce.com/perforce/doc.current/schema/

Record Type

@pv@ Put value = insert

@dv@ Delete value = delete

@rv@ Replace value = update

@vv@ Verify value = select

@ex@ commit

@mx@ flush

@nx@ Journal note

http://www.perforce.com/perforce/doc.current/schema/
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Log Analysis and Reporting

 Standard Log

• Log Analyzer

- Upload your logs

- Download our tools

• Track2SQL

 Structured Logs

 Performance monitoring using the log

 Metrics with P4toDB (replication technology)

 Discovering overall trends
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Structured Log

# Structured

Logs

Description

1 all All loggable events (commands, errors, audit, etc...)

2 commands Command events (command start, compute, and end)

3 errors Error events (errors-failed, errors-fatal)

4 audit Audit events (audit, purge)

5 track Command tracking (track-usage, track-rpc, track-db)

6 user User events; one record every time a user runs p4 logappend.

7 events Server events (startup, shutdown, checkpoint, journal rotation, etc.)

8 integrity Replication errors/events
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Structured Logs

 Enable specific structured logs with:

p4 configure set serverlog.file.n=logtag.csv

p4 configure set serverlog.maxmb.n=1024

p4 configure set serverlog.retain.n=45

 Enabling all structured logging files can consume 
considerable space and impact performance.

 Structured logs are automatically rotated 

• Checkpoint or journal rotation

• Exceeding size limit

• When ‘p4 logrotate’ is run.
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Conclusion

 Database schema is public

 Some tools use the checkpoint or the database directly

 Handle with care

 Ask Perforce support or consulting if you are not sure
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Exercises

Lab Set E7: Structured Logs

New commands in this chapter (samples):

 p4 configure set serverlog.file.n=errors.csv

 p4 configure set serverlog.maxmb.n=30Mb

 p4 configure set serverlog.retain.n=45

 p4 logappend

 p4 logrotate
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Preliminary Decisions

 Uses of scripts

 Choosing the interface

 Setting Environment Variables

 User Authentication
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Uses of scripts

 Reporting tools

 Daemons and recurring processes

 Wrappers for Helix Enterprise commands

 Triggers

 Workflow and policy enforcement

 P4V customization (P4JsAPI)

 P4Broker

 Legacy SCM data import
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Typical workings of a script

 Data processing in batches

• Retrieve information such as files or changes

• Process the data in the script

• Potentially update Helix Server

 Form handling

• Retrieve a form such as a client workspace

• Modify the form in the script

• Update the form in Helix Server
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Workflow and Policy enforcement

 Triggers

• Submit/Shelving triggers

• Authentication triggers

• Form triggers

• Archive triggers

• Fix triggers

 P4Broker

• Block, redirect or modify commands
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Choosing the interface

 Wrap P4 command

+ Simple solution that will run everywhere

+ Batch scripting built into the OS and requires no installation

• Requires parsing of output

 APIs

+ Language-specific integration

+ Extendable

+ Performance (reduced connection overhead)

• Requires installation (and/or build/compilation)
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API’s Available for Scripting

 Programming Languages and APIs

• C++

• P4Java

• Objective-C

• .NET

 Derived APIs  (C++ API wrappers)

• P4Python

• P4Perl

• P4Ruby

• P4PHP

http://www.perforce.com/product/components/apis

http://www.perforce.com/product/components/apis
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Wrapping the command line client P4

 Command line returns lines of text

p4 describe -s 13

Change 13 by sknop@alita on 2015/03/02 12:58:51

Branching foo from bar.

Test branch only.

Affected files ...

... //depot/tests/foo#1 branch
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Capture errors, warnings and messages

 Use -s to precede each output line with “info” or “error”

p4 -s sync ...

info: //depot/foo#3 – updating /client/foo

error: Can't clobber writable file /client/foo

exit: 1
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Tagging output: Command line and API

 Format output by using -ztag

p4 -ztag clients 

... client bruno_ws

... Update 1104271684

... Access 1104340062

... etc.

 Helix Server API based on tagged data output



112

Form handling: bypassing an editor

 Redirect to standard output
p4 change -o

• Read from standard input
p4 submit –i

 Submit without invoking an editor
p4 submit -d "Fixed off-by-one error."

 Example: Create a client workspace without an editor

p4 client –o | p4 client -i
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Setting the environment for scripts

 Command line flags

p4 –p server:1666 –u script_user –c script_ws info

 P4CONFIG (next slide)

 Environment and registry variables

 Recommendation:

• Use P4CONFIG 

• Set P4CONFIG in the scripts to make sure it is set in the environment

• Keeps scripts independent of Helix Server and current directory location
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P4CONFIG

 P4CONFIG points to a file name 
p4 set P4CONFIG=P4Config.txt

export P4CONFIG=/p4/scripts/.p4config

 File usually located in the workspace root or scripts folder

 File contains the Helix Server variables 

P4PORT=server:1666

P4CLIENT=script_ws

P4USER=script_user
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User authentication for scripts

 p4 login

• Works for all Helix Server security levels

• Works if Helix Server is integrated with AD

• Works if Helix Server is integrated with SSO

 Either: Store password locally (hidden/restricted) file

p4 login < /p4/scripts/.password

 Or: Use ever-lasting ticket (ideally in separate P4TICKETS file)
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Use a group to extend session 

Group:   scripts

MaxResults:    1000000

Maxscanrows:   5000000

MaxLockTime:    30000

Timeout:     unlimited

Subgroups:

Owners:   

bruno

Users:    

script_user

p4 group scripts
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P4TICKETS

 P4TICKETS points to a ticket file

export P4TICKETS=/p4/scripts/.script_p4tickets

 Important when scripts may be run as a different user 
(default value is home directory which is different per user)

 Provides safety from accidently logging out a script user

• Beware of p4 -u script_user logout -a

- Invalidates all tickets for this user
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Questions?
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The  End   

All Perforce manuals and technical notes are available at 
www.perforce.com

Follow and participate with the Perforce Community and Forums at

www.perforce.com/community

workshop.perforce.com

Report problems and get technical help from 

support@perforce.com

http://www.perforce.com/
http://www.perforce.com/community
http://workshop.perforce.com/
mailto:support@perforce.com

