
Advanced
Perforce Helix

Administration

2

Introduction

 Introductions

 Class Schedule

 GUI vs. CLI

 P4Admin Demonstrations

 About the Exercises

3

Course Contents

• Replication – Introduction

• Fully Distributed – Edge Servers

• Advanced Maintenance

• Offline Checkpoints

• Broker

• Security

• Advanced Tools

• Scripting

4

Notation used herein

 p4 command and flags or variables:

p4 –p port command –f flags

 Items of note in output

 Examples of commands in text

 Sample output:

$ p4 ping -c 1000 -s 5120000

2.24s for 1000 messages of 5120000 characters

Advanced
Perforce Helix Administration

Replication - Introduction

6

What is Replication?

 A separate Perforce Helix Server (p4d) instance which is
continuously polling the master server for updates

• Duplicating server data, typically in real time

 Has its own metadata (db.*)

• can be filtered

• can be fully distributed (Commit/Edge later)

 Usually has its own set of Versioned Files

• can be filtered

• can be shared

7

Why Replication?

 Disaster Recovery

• Possibly read-only

 Offloading intense server traffic

• Reports

• Builds

 Forwarding Replica (aka Smart Proxy)

 Edge / Commit server architecture (distributed working)

8

Replication - Implementation

 Server-to-Server replication

• Asynchronous based on journal file

• Supports both Metadata-only and Full Replication

• No need for external scripts, complete solution

 Replicas must initially be seeded with a checkpoint
(metadata)

• Versioned files are required for full replication

- Can be copied before setup using OS commands (e.g. rsync/robocopy)

- Can be copied after setup using Helix Enterprise replication (p4 verify –qt)

9

P4D P4D

Versioned

files

(full set, filtered, or on-demand)

Replication Architecture – General

Fast
LAN

ReplicaMaster

Build server

DBsDBs

Versioned

files

(full set)

WAN

10

P4D

Replication Architecture – Detailed

db.*

Versioned

files

journal

Master

db.*

pull

Versioned

files

pull -u

Replica

state

rdb.lbr

P4D

11

Overview of Replication Configuration

 In master repository:

• Define serverid for master

• Create server spec for replica (defines the server name)

• Create replica service user in master repo

- Assign to a group (for long timeout) and give super access

- Create a password for user

• Create other configurables for replica

 Create replica environment (directory structure etc)

• Define serverid for replica

 Checkpoint master, transfer to replica, and replay

 Login to master as replica service user to create ticket

 Start replica and monitor

12

p4 pull

 Typically runs as a background task inside the replica
server

 p4 pull –lj Shows metadata replication status

 p4 pull –ls Shows content transfer status

Command Effect

p4 pull Retrieve missing journal entries, then terminate (CLI)

p4 pull -i <N> Continuously pull every <N> seconds (server configurable)

p4 pull -u Retrieve missing file revisions, then terminate (CLI)

p4 pull -u -i <N> Continuously pull file revisions (server configurable)

p4 pull -l List missing file revisions or errors (CLI)

p4 pull -l [-j | -s] Replica reporting (CLI)

13

How does ‘p4 pull’ keep track?

 state file

 Text file normally located in the replica P4ROOT directory

 Value/example:

 journal / offset

 104/28398

 Allows replication to be interrupted

 Master server can rotate journal file

 Configure journalPrefix if master uses journal prefix for checkpoints

 rdb.lbr database
 Binary file located in the replica P4ROOT directory

 Contains information on missing archive revisions

14

Configuration

 ‘p4 pull’ is designed to be a background process

 Started from the replica server

 One process for retrieving metadata (>1 not allowed)

 Several processes to retrieve archive data (typically 2-4)

15

Journal rotation and Prefix

 Master
 p4 admin checkpoint/journal [-Z] [prefix]

 Do not use –z, use –Z (uppercase)

 Compresses checkpoint but not rotated journal file

 If you use a prefix, must use the same prefix for ‘p4 pull’

 Recommended: Use ‘journalPrefix’ configurable instead (next slide)

 Replica
 p4 pull [–J prefix] [–i n]

 Journal will be rotated in sync with the master

16

journalPrefix

 Specify journalPrefix configurable for the master to…

 Simplify checkpoint and journal rotation

 Avoid having to specify ‘p4 pull –J prefix’ in the replica(s)

 Specify journalPrefix configurable for the replica to…

 Automatically rotate journal to correct location when master rotates

 Help to prevent replica running out of disk space

 Without journalPrefix, replica will rotate journal in P4ROOT

p4 configure set repl_1#journalPrefix=/replica/checkpoints/repl_1

/replica/checkpoints/repl_1.ckp.100.gz

/replica/checkpoints/repl_1.jnl.101

17

Prepare in the Master

> p4 configure set monitor=1

For server 'any', configuration variable 'monitor' set to '1'

> p4 configure set master#net.tcpsize=512k

For server ‘master', configuration variable 'net.tcpsize' set to '512k’

> p4 configure set repl_1#P4TARGET=master:1666

For server ‘repl_1', configuration variable 'P4TARGET' set to 'master:1666'

18

P4DP4D

Prepare in the Master

any: monitor=1

master: net.tcpsize=512k

master: lbr.bufsize=64k

repl_1: P4TARGET=master:1666

repl_1: serviceUser=service

repl_1: db.replication=readonly

repl_1: lbr.replication=readonly

repl_1: startup.1=pull –i 0

repl_1: startup.2=pull –i 1 –u

server.id=master

any: monitor=1

master: net.tcpsize=512k

master: lbr.bufsize=64k

repl_1: P4TARGET=master:1666

repl_1: serviceUser=service

repl_1: db.replication=readonly

repl_1: lbr.replication=readonly

repl_1: startup.1=pull –i 0

repl_1: startup.2=pull –i 1 –u

checkpoint

server.id determines which configuration is active

p4 configure show allservers p4 configure show allservers

server.id=repl_1

restore

19

Server environment settings

 Command line flags

• p4 configure set

• p4d -cset

 Environment variables

 (On Windows) registry variables

20

Configuration parameters

Parameter Sample Values

P4TARGET svrmaster.example.com:1666

db.replication readonly

lbr.replication readonly

rpl.forward.all 1

serviceUser repl_1_svc

startup.1 pull –i 0

startup.2 pull –u –i 1

startup.3 pull –u –i 1

21

Active Replication Monitoring (CLI)

 p4 pull –l [–j|-s]

 Reports pending transfers

 p4 verify [-t]

 Option -t schedules content transfer of missing/damaged revision

 p4 journaldbchecksums

 Run on master, check log on replica

22

Naming Servers

• All Helix Enterprise servers should

• Be named

• Have server specifications

• p4 server servername

• Server names…
• Are used in replication and failover and other scenarios

• Define server capabilities

• Determine which configurables apply to a server

• Enforce security

• Require special service accounts for access by remote servers

23

Naming Servers

 p4 serverid [serverID]

 p4d -xD [serverID]

 Sets/retrieves server.id file in server’s root directory

 Tells server which configurables apply to it

 P4NAME – Environment variable

 Required on Windows prior to 2015.2 release because server.id file is ignored.

 Overrides server.id file

 Not suggested for use on platforms other than Windows

24

Server Specifications

 p4 server servername

 Creates or updates information
about a server

 Specifies information about a
server – the most important is
the type (services it provides)

Type Definition

standard Standard Helix Server

replica Helix replica server

broker Helix Broker

proxy Helix Proxy

forwarding-replica Helix smart proxy

build-server Helix Build Server

commit-server Helix Commit Server

edge-server Helix Edge Server

P4AUTH Helix Authentication Server

P4CHANGE Helix Change Server

25

Configurables and Named Servers

 p4 configure show

 Shows running configuration of queried server

 p4 configure show allservers

• Shows stored configurables for all servers

 Use ‘p4 configure set/show’ for named servers

 p4 configure show SERVERID

 p4 configure set SERVERID#variable=value

 p4 configure set repl_1#P4TARGET=192.168.1.1:1666

 p4 configure show repl_1

26

Configurables and Named Servers

> p4 configure show

P4ROOT=. (-r)

P4PORT=9876 (-p)

P4JOURNAL=journal (default)

auth.default.method=perforce (default)

 p4 configure show repl_1

repl_1: P4TARGET = 192.168.1.1:1666

repl_1: P4TICKETS = /path/to/replica1/.p4tickets

repl_1: db.replication = readonly

repl_1: lbr.replication = readonly

repl_1: startup.1 = pull -i 1

repl_1: startup.2 = pull -u -i 1

27

Service user

 Replication requires user of type service.

 This service user requires ‘super’ access.

 Add user to a group (e.g. service.g) group with unlimited timeout.

 On replica login as service user before starting replication

• Define P4TICKETS location for the replica on command line

• P4TICKETS should also be defined (same value) as a configurable for each server

set P4TICKETS=c:\p4\p4tickets.txt

p4 –u p4admin login repl_1_svc

28

Replication set up – check master id

 Check master has a serverid

 p4 serverid

Server ID: master

 If necessary, set it:

• p4 serverid master

 Alternative:

• p4d –r . –xD

29

Replication set up - master

 Set up the replica environment on the master server in metadata

 Create a server specification:

 p4 server repl_1

 Add Services: forwarding-replica to the spec and save it

 Create a replica service user:

 p4 user -f repl_1_svc

 Add Type: service to the spec and save it

 p4 passwd repl_1_svc

30

Replication set up - master

 Add replica user to a group of service users (with no ticket timeout)

 p4 group service_users

 Add repl_1_svc to the spec in Users:

 change Timeout: to unlimited

 and save it

 Ensure group has super access:

 p4 protect

 Make sure there is a line with super group service_users present

31

Replication set up - master

 Set variables for the replica in the master:

p4 configure set server=3

p4 configure set repl_1#P4TARGET=192.168.1.1:1666

p4 configure set repl_1#P4TICKETS=/path/to/.p4tickets

p4 configure set "repl_1#startup.1=pull -i 1"

p4 configure set "repl_1#startup.2=pull –u -i 1"

p4 configure set repl_1#db.replication=readonly

p4 configure set repl_1#lbr.replication=readonly

p4 configure set repl_1#serviceUser=repl_1_svc

p4 configure set repl_1#server.depot.root=/path/to/replica/depots

32

Replication set up - master

 Verify settings on master:

> p4 configure show repl_1

repl_1: P4TARGET = 192.168.1.1:1666

repl_1: P4TICKETS = /path/to/replica/.p4tickets

repl_1: db.replication = readonly

repl_1: lbr.replication = readonly

repl_1: startup.1 = pull -i 1

repl_1: startup.2 = pull -u -i 1

repl_1: serviceUser = replica_svc_user

repl_1: server.depot.root = /path/to/replica/depots

 All okay? Take a checkpoint of the master (or rotate journal):

p4 admin checkpoint -Z

33

Replication set up - replica

 Setup environment on replica host (P4ROOT dir, P4LOGS, P4JOURNAL, binaries etc)

 Copy the checkpoint to the replica and restore

• If you just rotated the journal on the master, then copy previous checkpoint and all rotated
journals since then to replica and restore (this is a good option if a checkpoint takes many hours
to run)

 Create the server.id file on the replica (in $P4ROOT dir):

p4d –r . –xD repl_1

Perforce server info:

Server ID: repl_1

34

Replication set up - replica

 Log into the master from replica machine (with same value in
P4TICKETS environment variable as is in relevant configurable):

export P4TICKETS=/path/to/replica/.p4tickets

p4 –p master-host:1666 –u repl_1_svc login

 Start the replica

35

Replication set up - replica

 Replication is working:
> p4 –p replica-host:1666 pull -lj

Current replica journal state is: Journal 2, Sequence 683.

Current master journal state is: Journal 2, Sequence 683.

The statefile was last modified at: 2014/10/30 14:27:56.

The replica server time is currently: 2014/10/30 14:28:38 -0700 PDT

> p4 -p master-host:1666 journaldbchecksums

Perforce server info:

Table db.config checksums match. 2I li014/10/30 14:33:41 version 1: expected

Perforce server info:

Table db.counters checksums match. 2014/10/30 14:33:41 version 1: expected

Perforce server info:

Table db.nameval checksums empty. 2014/10/30 14:33:41 version 1: expected

36

Replication set up - troubleshooting

 Common errors:

• Login ticket not set correctly

• Permissions for replica user not correct

• Typos in configuration parameters

 Look for errors in replica and master log files

tail -50 /path/to/master/log

tail -50 /path/to/replica/log

grep -2 "Perforce server error:" /path/to/master/log

grep -2 "Perforce server error:" /path/to/replica/log

37

Replication *live*

 Replication really is quite easy to configure

 But you need to be precise and accurate

 Carefully plan and review all configurables before taking a checkpoint of
master to seed replica with

 If you make a mistake and have to change configurables, consider
rotating master journal copying only that across

 Demo: Setup and install a forwarding replica

38

Exercises

Lab Set E1: Replication

New commands in this chapter:
 p4 configure set SERVERID#variable=value

 p4 configure show allservers

 p4 pull

 p4 pull –l [-j | -s]

 p4 journaldbchecksums

 p4 verify –t

 p4d –xD

 p4 server

Advanced
Perforce Helix Administration

More Replication Options

40

P4D P4D P4D

Replicas for HA and DR

All DataMetadata only

LifeboatMaster HA_Replica

DBsDBsDBs

Versioned

files

(full set)

Versioned

files

(On a filer e.g. NFS)

WAN

41

Prepare in the Master

ServerID: Replica1

Name: Replica1

Type: server

Services: forwarding-replica

p4 server Replica1

p4 configure set Replica1#db.replication=readonly

p4 configure set Replica1#lbr.replication=readonly

Equivalent value set via ‘p4 server’ specification:
p4 configure set Replica1#rpl.forward.all=1

42

Replica filtering

 To exclude entire tables from a replica:

p4 pull -T db.have,db.client

 Detailed Filtering:

ServerID: Replica1

:

ClientDataFilter:

-//site2-ws-*

ArchiveDataFilter:

//....c

-//....mp4

p4 server Replica1 p4 configure set

"Replica1#startup.1=pull -i

30 -P Replica1"

Advanced
Perforce Helix Administration

Fully Distributed

44

Edge/Commit Server Architecture

Commit

Edge

Changes and
other metadata

Metadata from Commit
Local Workspace metadata
Archive files

45

Edge/Commit Server Architecture

Commit

Edge Edge

46

Prepare in the Master

ServerID: Edge1

Name: Edge1

Type: server

Services: edge-server

p4 server Edge1

p4 configure set Edge1#db.replication=readonly

p4 configure set Edge1#lbr.replication=readonly

Equivalent value set via ‘p4 server’ specification:
p4 configure set Edge1#rpl.forward.all=1

47

Configuring Edge workspaces

Client: build-ws-9201

:

ServerID: Edge1

View:

:

p4 client build-ws-9201

48

Edge/Commit Considerations

 Edge servers contain locally-unique data

• Generally require backup/recovery

 Information is distributed

• You may need to interrogate all edge servers

 Forwarding replicas are simpler

• Address many needs

• large db.have is better handled with Edge servers

 Overall user performance is better with Edge servers

49

Build-Edge/Commit Considerations

 Edge servers for build farms don’t generally require backup

 Build data is inherently transient

 Faster to rebuild from master than to rebuild from scratch

• Workspaces stored on master

• ‘Have’ data stored local to Edge

• Local ‘have’ data not valuable after build is complete

50

Exercises

Lab set E2: Forwarding and edge server

Advanced
Perforce Helix Administration

Advanced Maintenance

52

Topics

 Recover a Stored Spec Revision

 Lazy Copies

 Archive/Restore

53

Spec Depot

 Goal

• Recover specs such as clients and protection table

• Keep history of changes to specs

• Identify user who changed a spec

 Implementation

• Separate spec depot automatically maintained by Helix Enterprise

• Specs are stored as form files, which can be printed or synced

- Grouped into directories by type, such as client or label

54

Spec Depot Usage

 Spec depot stores specs like clients and protection table
(not change)

 Tracing of changes by a user

p4 print -q //specs/label/lastbuild.p4s#1

The form data below was edited by bruno

 Optional: controlling which specs are versioned

p4 depot specs

SpecMap:

//specs/...

-//specs/client/build_ws_*

55

Recovering a Stored Spec Revision

 List revisions in the spec depot
p4 filelog //specs/client/bruno_ws.p4s

... #4 default change edit on 2014/11/01

... #3 default change edit on 2014/10/17

... #2 default change edit on 2014/07/01

... #1 default change add on 2013/11/20

 Display content of revisions

p4 print -a //specs/client/bruno_ws.p4s

 Replace spec with earlier version

p4 print -q //specs/client/bruno_ws.p4s#3 | p4 client -i

56

Branching and Lazy Copies

 Files branched or copied only create metadata in the db

• Retain reference to original file location  lazy copy

Workspace Database Depot storage

1 2

1

main/file.txt

rel1/file.txt

main/file.txt,v

57

Lazy Copies and Snap

p4 fstat –Oc //depot/Jam/REL2.0/src/jam.c

...

... lbrFile //depot/Jam/MAIN/src/jam.c

... lbrRev 1.30

... lbrType text

... lbrIsLazy 1

(undocumented)
p4 snap //depot/Jam/REL2.0/src/jam.c

//depot/Jam/REL2.0/src/jam.c#1 – copy from //depot/Jam/MAIN/src/jam.c 1.30

58

After Snap

 Files in the depot storage are duplicated

 Useful when cleaning up depots with obliterate

Workspace Database Depot storage

1 2

1

main/file.txt

rel1/file.txt

main/file.txt,v

rel1/file.txt,v

59

Archiving and Restoring

 Goal:

• Free up space in active depots

• Speed up backup and verify

• Preserve history

• Simple restore

 Implementation:

• Separate archive depots (typically located on cheap storage)

• Files can be archived and restored at individual revisions

60

Archiving and Restoring

 Files not branched can be archived

• Requires at least one depot of type archive

• Preserves history

p4 archive –D archives //assets/...

 To archive files stored in delta format, use the -t option.

p4 archive –D archives –t //assets/text/readme.txt#9,9

 Restore files as needed

p4 restore –D archives //assets/images/myimage.jpg#3

61

Archiving – Listing and Purging

 Files in original depot are marked as archive

p4 files //assets/...

//assets/images/myimage.gif#1 - archive change 865 (ubinary)

...

 List files in archive depot

p4 files –A //archives/...

//archives/assets/images/myimage.gif#1

...

 Purge unneeded archived files (cannot be undone)

p4 archive –D archives –p //assets/...@2012/01/01

62

Exercises

Lab Set E3: Advanced Maintenance

New commands in this chapter (samples):

 p4 archive

 p4 restore

 p4 snap (undoc)

Advanced
Perforce Helix Administration

Offline Checkpoints

64

Topics

 Offline Checkpoints

• Usage

• Upgrades

• Switch offline_db/root

65

Offline Checkpoint

 Goal

• Checkpoint without any downtime

• Easy and fast recovery

• Optional: regular database restoration

Restored databases are smaller than original, but contain equivalent data

(Removes empty data pages and rebalances the b-tree indexes)

 Implementation

• Separate offline database created from checkpoint

• Regular updates through rotated journal

• Offline database dumped into checkpoint

66

Prep Offline Checkpoint – Create Seed

p4d –r /p4/1/root –jc –Z /p4/1/checkpoints/p4_1

/p4/1/root

Database
Live journal

p4_1.ckp.100.gz jnl.99

/p4/1/checkpoints

67

Prep Offline Checkpoint – Apply Seed

/p4/1/offline_db/p4/1/root

Database
Live journal

p4_1.ckp.100.gz jnl.99

/p4/1/checkpoints

Database

p4d -r /p4/1/offline_db -jr -z /p4/1/checkpoints/p4_1.ckp.100.gz

68

Offline Checkpoint

 Nightly:

• Truncate journal on live database

p4d –r /p4/1/root –J /p4/1/logs/journal –jj /p4/1/checkpoints/p4_1

• Restore journal to offline directory

p4d –r /p4/1/offline_db –jr /p4/1/checkpoints/p4_1.jnl.100

• Dump the offline database to make a new checkpoint

p4d –r /p4/1/offline_db –jd –z /p4/1/checkpoints/p4_1.ckp.101.gz

69

Offline Checkpoint

/p4/1/offline_db/p4/1/root

Database
Live journal

p4_1.ckp.100.gz jnl.99

/p4/1/checkpoints

Database

jnl.100

Truncate journal
-jj

p4_1.ckp.101.gz

Restore journal
-jr

Dump checkpoint
-jd

70

Recreate Offline Database

 Recreate the offline database from the new checkpoint

rm –f /p4/1/offline_db/db.*

p4d –r /p4/1/offline_db –jr -z /p4/1/checkpoints/p4_1.ckp.101.gz

71

Switch Offline Database/Root

 Stop the production server

 Rotate the journal

 Replay the journal to the offline_db

 Move /p4/1/root/db.* /p4/1/root/save/

 Move /p4/1/offline_db/db.* /p4/1/root/

 Restart the master server

 Delete the files in /p4/1/root/save/

 Recover the most recent checkpoint into /p4/1/offline_db

 Recover the journals following the checkpoint into /p4/1/offline_db

 Dump a checkpoint from /p4/1/offline_db

 Recreate the offline database from the new checkpoint

72

Exercises

 Lab Set E4: Offline Checkpoints

Advanced
Perforce Helix Administration

Broker

74

P4Broker

 Intercepts all incoming Helix Enterprise commands

 Command handling support:

• Redirection

• Blocking

• Rewriting (undocumented)

 Great for notifying users when the server is down for maint.

 Sometimes used as part of HA/DR strategies to avoid DNS
change delay.

75

P4Broker Use Cases

 Policy Customizations

• different capabilities than triggers

 Traffic Redirection for Load Distribution

• not “load balancing”

 Traffic Redirection for execution of automated failover
operations

• advanced/custom usage

76

BROKERP4D

Helix Broker

command: opened

{

flags = -a;

action = reject;

message = "Not admin";

}

P4Broker.config

DBs

Versioned

files

Build server

77

Redirection

 Selective – The default setting

• Redirection allowed, but after the first command in a session hits the
default server, all others in the same session use the default server and
are not redirected.

 Pedantic – All redirected commands are redirected

• Can cause the GUI to not update the icons correctly.

78

Filter Scripts

 When the action for a command handler is “filter”:

• Broker executes the program or script

• Performs the action returned by the program.

 Broker invokes filter program

 Passes in all the information about the command via stdin.

• Filter program must read data from stdin before additional processing.

 The filter program responds on stdout with one of these:

• action: PASS/REJECT/REDIRECT/RESPOND

• message: Some message for the user

79

Mechanics: Helix Broker Setup

 Define an operating server.

 Generate a preliminary broker configuration file.

 Adjust the broker configuration to your needs.

 Set broker config file location.

 Initiate as a Windows service or Unix/Linux daemon.

 Documentation:

• Latest Release Helix Broker Notes

• Multi-Site Deployment Manual

80

Exercises

 Lab Set E5: P4Broker

Advanced
Perforce Helix Administration

Security

82

Setting Server Security Level

 Security settings determine how

Helix Server enforces passwords

 Display security counter value

p4 configure show security

security=3 (configure)

 Set security counter

p4 configure set security=3

0 No password required,

any password allowed (default)

1 Strong password is required,

can be stored in Windows registry

2 Strong password is required,

cannot be stored in registry

3 p4 login tickets only,

no password stored anywhere

4 Level 3 + Edge, replica, proxy & brokers

must connect using a service user

83

Server Security

 Server security levels (0-4)

• p4 configure set security=4

 Turn off auto user creation; require authorization for user list

• p4 configure set dm.user.noautocreate=2

• p4 configure set run.users.authorize=1

 Set changelists to restricted by default

• p4 configure set defaultChangeType=restricted

84

Connection Protocols

 TCP

• Default protocol

P4PORT=tcp:p4server:1666

 RSH

• Starts up the server for each request

• Useful for testing and inetd support

P4PORT=rsh:/usr/local/bin/p4d –r $P4ROOT –L $P4LOG -i

 SSL

• SSL encrypted connection when using “ssl:” prefix

P4PORT=ssl:p4server:1667

85

RSH connection

 Starts up a server on client request

 No TCP/IP connection to server

• Uses stdout/stdin bound to client (with -i option)

 Usage examples:

• Sidetrack server (specify different log file)

• Test environments (P4Python, P4Ruby, P4Perl)

86

SSL Encryption

 Helix Server, Helix Proxy, Helix Broker

 Consider implications with 3rd party integrations

 If enabled, all clients require SSL connection.

• Run two P4Ds to offer SSL and non-SSL (one with “ssl:”, one without)

 Client needs fingerprint in its P4TRUST file

p4 trust

87

p4 trust

 Client-side command for handling fingerprints

 Uses P4TRUST environment variable (default
$Home/.p4trust)

p4 trust –h

p4 trust –y Accept the fingerprint

p4 trust –n Reject the fingerprint

p4 trust –f Force overwriting of the fingerprint

p4 trust –l List accepted fingerprints

p4 trust -d Delete a fingerprint

88

SSL Setup

 P4SSLDIR -> directory with key and certificate

cd $P4ROOT

mkdir ssl # optionally create config.txt

chmod 700 ssl # drwx------

export P4SSLDIR=ssl

p4d –r . -Gc # key and certificate

p4d –r . –p ssl:1667

 Client needs to accept fingerprint

p4 –p ssl:p4server:1667 trust -y

89

 Use P4Broker

• P4D runs with SSL encryption enabled

• P4Broker itself runs unencrypted

• Allows phasing-in of encrypted connections

P4D BROKER

Phasing-in SSL encryption with P4Broker

encrypted unencrypted

P4 Client

90

Exercises

Lab Set E6: Security

New commands in this chapter:

 p4d –Gc

 p4 trust

Advanced
Perforce Helix Administration

Advanced Tools

92

Advanced Tools

 perfmerge

 perfsplit

 p4-migrate

 Checkpoint surgery

 Conversions – ftp://ftp.perforce.com/perforce/tools

ftp://ftp.perforce.com/perforce/tools

93

perfmerge

 Goal

• Merge two Helix Servers into a single Helix Server

 Implementation

• Perfmerge tool reads both databases

• Choice on change merging

- Append

- Intersperse and order in time

- Append with offset

94

perfsplit

 Goal

• Extract data from a main server with its exact revision history

• Split a Helix Server into two separate Helix Servers

 Implementation

• Perfsplit reads directly from an existing Helix Server

• It uses a splitmap to determine which files are split

- Same syntax as the label view map

• Only creates metadata, depot files need to be copied separately

• You should run “p4 snap” on the directory or directories being split first

95

p4migrate

 Goal

• Migrate a Helix Server from a case-insensitive to a case-sensitive
platform

 Implementation

• Reads a checkpoint to find case inconsistencies

• Generates a case-fix map

• Use the map to correct the checkpoint

• Once the checkpoint is case-consistent it can be used for migration

• Tool can also be used to rename depot paths

• Migration from case-sensitive to case-insensitive is not supported

96

Checkpoint/Journal Format

 Text file containing journal records

 Each record has a type

• Checkpoint only has @pv@ entries

 Strings are surrounded by @ symbol

 Each value record refers to

• A database table

• The table version

 http://www.perforce.com/perforce/doc.current/schema/

Record Type

@pv@ Put value = insert

@dv@ Delete value = delete

@rv@ Replace value = update

@vv@ Verify value = select

@ex@ commit

@mx@ flush

@nx@ Journal note

http://www.perforce.com/perforce/doc.current/schema/

97

Log Analysis and Reporting

 Standard Log

• Log Analyzer

- Upload your logs

- Download our tools

• Track2SQL

 Structured Logs

 Performance monitoring using the log

 Metrics with P4toDB (replication technology)

 Discovering overall trends

98

Structured Log

Structured

Logs

Description

1 all All loggable events (commands, errors, audit, etc...)

2 commands Command events (command start, compute, and end)

3 errors Error events (errors-failed, errors-fatal)

4 audit Audit events (audit, purge)

5 track Command tracking (track-usage, track-rpc, track-db)

6 user User events; one record every time a user runs p4 logappend.

7 events Server events (startup, shutdown, checkpoint, journal rotation, etc.)

8 integrity Replication errors/events

99

Structured Logs

 Enable specific structured logs with:

p4 configure set serverlog.file.n=logtag.csv

p4 configure set serverlog.maxmb.n=1024

p4 configure set serverlog.retain.n=45

 Enabling all structured logging files can consume
considerable space and impact performance.

 Structured logs are automatically rotated

• Checkpoint or journal rotation

• Exceeding size limit

• When ‘p4 logrotate’ is run.

100

Conclusion

 Database schema is public

 Some tools use the checkpoint or the database directly

 Handle with care

 Ask Perforce support or consulting if you are not sure

101

Exercises

Lab Set E7: Structured Logs

New commands in this chapter (samples):

 p4 configure set serverlog.file.n=errors.csv

 p4 configure set serverlog.maxmb.n=30Mb

 p4 configure set serverlog.retain.n=45

 p4 logappend

 p4 logrotate

Advanced
Perforce Helix Administration

Scripting

103

Preliminary Decisions

 Uses of scripts

 Choosing the interface

 Setting Environment Variables

 User Authentication

104

Uses of scripts

 Reporting tools

 Daemons and recurring processes

 Wrappers for Helix Enterprise commands

 Triggers

 Workflow and policy enforcement

 P4V customization (P4JsAPI)

 P4Broker

 Legacy SCM data import

105

Typical workings of a script

 Data processing in batches

• Retrieve information such as files or changes

• Process the data in the script

• Potentially update Helix Server

 Form handling

• Retrieve a form such as a client workspace

• Modify the form in the script

• Update the form in Helix Server

106

Workflow and Policy enforcement

 Triggers

• Submit/Shelving triggers

• Authentication triggers

• Form triggers

• Archive triggers

• Fix triggers

 P4Broker

• Block, redirect or modify commands

107

Choosing the interface

 Wrap P4 command

+ Simple solution that will run everywhere

+ Batch scripting built into the OS and requires no installation

• Requires parsing of output

 APIs

+ Language-specific integration

+ Extendable

+ Performance (reduced connection overhead)

• Requires installation (and/or build/compilation)

108

API’s Available for Scripting

 Programming Languages and APIs

• C++

• P4Java

• Objective-C

• .NET

 Derived APIs (C++ API wrappers)

• P4Python

• P4Perl

• P4Ruby

• P4PHP

http://www.perforce.com/product/components/apis

http://www.perforce.com/product/components/apis

109

Wrapping the command line client P4

 Command line returns lines of text

p4 describe -s 13

Change 13 by sknop@alita on 2015/03/02 12:58:51

Branching foo from bar.

Test branch only.

Affected files ...

... //depot/tests/foo#1 branch

110

Capture errors, warnings and messages

 Use -s to precede each output line with “info” or “error”

p4 -s sync ...

info: //depot/foo#3 – updating /client/foo

error: Can't clobber writable file /client/foo

exit: 1

111

Tagging output: Command line and API

 Format output by using -ztag

p4 -ztag clients

... client bruno_ws

... Update 1104271684

... Access 1104340062

... etc.

 Helix Server API based on tagged data output

112

Form handling: bypassing an editor

 Redirect to standard output
p4 change -o

• Read from standard input
p4 submit –i

 Submit without invoking an editor
p4 submit -d "Fixed off-by-one error."

 Example: Create a client workspace without an editor

p4 client –o | p4 client -i

113

Setting the environment for scripts

 Command line flags

p4 –p server:1666 –u script_user –c script_ws info

 P4CONFIG (next slide)

 Environment and registry variables

 Recommendation:

• Use P4CONFIG

• Set P4CONFIG in the scripts to make sure it is set in the environment

• Keeps scripts independent of Helix Server and current directory location

114

P4CONFIG

 P4CONFIG points to a file name
p4 set P4CONFIG=P4Config.txt

export P4CONFIG=/p4/scripts/.p4config

 File usually located in the workspace root or scripts folder

 File contains the Helix Server variables

P4PORT=server:1666

P4CLIENT=script_ws

P4USER=script_user

115

User authentication for scripts

 p4 login

• Works for all Helix Server security levels

• Works if Helix Server is integrated with AD

• Works if Helix Server is integrated with SSO

 Either: Store password locally (hidden/restricted) file

p4 login < /p4/scripts/.password

 Or: Use ever-lasting ticket (ideally in separate P4TICKETS file)

116

Use a group to extend session

Group: scripts

MaxResults: 1000000

Maxscanrows: 5000000

MaxLockTime: 30000

Timeout: unlimited

Subgroups:

Owners:

bruno

Users:

script_user

p4 group scripts

117

P4TICKETS

 P4TICKETS points to a ticket file

export P4TICKETS=/p4/scripts/.script_p4tickets

 Important when scripts may be run as a different user
(default value is home directory which is different per user)

 Provides safety from accidently logging out a script user

• Beware of p4 -u script_user logout -a

- Invalidates all tickets for this user

118

Questions?

119

The End

All Perforce manuals and technical notes are available at
www.perforce.com

Follow and participate with the Perforce Community and Forums at

www.perforce.com/community

workshop.perforce.com

Report problems and get technical help from

support@perforce.com

http://www.perforce.com/
http://www.perforce.com/community
http://workshop.perforce.com/
mailto:support@perforce.com

