Monthly Scripting Column for January

Tip: Maybe it was there all
Greetings! This begins a series of bulletins, in which we introduce one of ||along, but you needed the "-
the scripts that will be in a future release. Ztag" decoder ring to actually

see it?

Today's script

It's easy to sing the praises of shell scripts.

Sometimes, however, you need to store away or parse something for later in the same script. In Perl, with
the Perforce API enabled, the parsing is easy.

As an example, we notice that sometimes people want to see the local pathname for their opened files.
¢ The simplest option might be to invoke "p4 where" for each file - but the extra calls don't make sense.
o It's useful to notice that "p4 -Ztag opened" returned many more fields than we're used to seeing. Each of

those can be used, and the "clientFile" field is suspiciously close to what we need.

We introduce "p4opened.p4perl", which is another of a line of simple (and dumb, but helpful) scripts. This
variant, below, is an example of P4Perl; the full source code is here and at the end of this page.

Note for reading any code on this page: Green text is what you'll cut/paste when you make your
own P4Perl script.

Comments should indicate the flow:
1. Get a list of opened files from 'p4 opened' (with tagged output)

2. For each of those files, print the clientFile field of the output. (Err, massage it first, mapping
"//clientname" to the client root directory.)

First step: Setting up P4 object

If you're using P4Perl, which is the Perforce hook for Perl, then you'll need to initialize your Perforce
connection:

use P4;

my $p4 = new P4;

$p4->ParseForms();

$p4->Init() or die "Failed to initialize 'p4' object!";
$p4->Tagged();

Note that we copy this block into most of our P4Perl programs. The other calls are handy because they foist
the parsing off to someone else:

1. The 'ParseForms' call make it easy to process any specs (client specs, etc),
2. and the 'Tagged' call makes it easy to process the 'opened' output.

Second step: retrieving information from a client spec

Note how easy certain things are. "Retrieve a client spec" boils down to this:
my $info = $p4->FetchClient();

$cl_name
$cl_root

$info->{"Client"};
$info->{"Root"};

If we'd wanted to update it and stash it back into the database, we'd use a call to 'SaveClient'.
my $info = $p4->FetchClient();
$cl_name = $info->{"Client"};
s$info->{"Root"} = "/tmp/herman";

print "Setting root of $cl_name to $info->{'Root'}\n";
$Sret = $pd->SaveClient($info);

Third step: getting information about what's opened
We chose to run:

@ret = $p4->Opened();
This, in turn, runs "p4 opened".

From there, it's a matter of writing out the correct field from each filename returned in eret.

Reminder: Green text for P4Perl hooks.

Task: output list of 'opened' files, using local pathnames.

status: tested on Win/NT using perl 5.6 with p4perl API
num of calls to 'p4': 2
room for optimization/improvement: add getopts call

HHHFHRH® R

Copyright 2004 Perforce Corporation, Inc. All rights reserved.
use P4;

my $p4 = new P4;

$p4->ParseForms();

$p4->Init() or die "Failed to initialize 'p4' object!";
$p4->Tagged();

. - - - - - - - -
first call to P4: 'p4 client -o'

Note that it's easier to get the client root dir from

the 'client spec', hence the "FetchClient" call.

Hoem - - - - - - - -

my $info = $p4->FetchClient();

$cl_name = $info->{"Client"};
$cl_root = $info->{"Root"};

#eee - - - - - - - -
second call to P4: 'p4 opened’

Hoem - - - - - - - -

@ret = $p4->Opened();

#oee - - - - - - - -
Now, loop through the output of 'p4 opened'. The tagged
output gives us a client-syntax version of the name

in the form "//clientName/rest-of-local-path",

so we substitute the client root dir before printing.

Heem - - - - - - - -
$oldtag = "//$cl_name";

foreach $h (@ret) {
$localFile = $h->{'clientFile'};

$localFile =~ s/$oldtag/$cl_root/;
print "$localFile\n";

Note: all the programs shown in these columns have been written four times: in Perl, in P4Perl, in Python, and in P4Ruby. Look into
the Perforce example database for the other versions. $1d: 0130p4perl.html,v 1.1 2004/04/18 15:41:00 p4 Exp $
© 2004 Perforce Corporation, Inc.

Monthly (dev trick) Column for February

Tip: integrate often and
quickly, but hold off actually
making the branch until you
really gotta.

Greetings! This continues a series of bulletins, this month focuses on
aspects of how we do software development rapidly.

This is an excerpt from some internal engineering documents, so that you can see how we
approach this topic internally.

Today's topic - development branches

Sometimes, you have work to checkin and nowhere to put it.

We found that we needed to put out a release that included Perl/Python, but didn't want to check our Ruby
scripts into "//depot/main/src/..." until release 2.0 went out.

Truth be told, there was no guarantee that release 3.0 was the right release for the Ruby stuff, either. (So any
suggestions to check in the Ruby scripts into a 3.0-specific area don't hold up.) We needed a place to check in
the work, knowing that it was safe and backed up, but whence we could retrieve our work to include "when the
time was right."

First step: Deciding to create a development branch

Usually, you develop things in your workspace to check into the main codeline. A codeline or branch or tree
(or whatever you want to call it) should have one guiding principle, which might be one of the following:

1. The "main" area that we check new features/files into, that all new release lines are made from;
2. The area where "release 1.0" is being finished up;
3. The area where "release 2.0" is being finished up.

For this case, "where to put files that are incompatible with current work in a codeline/branch/etc" isn't
addressed. Let's add a new branch whose purpose is:

1. The "development" area where we can check Ruby scripts until it's okay to move them into "main".

This gives us a play-pen to make changes, independently of the "main" area in which the Python work's
getting done.

Don't bother with development branches for short-term stuff. It's not worth it, since your workspace is

really the best place to stage work. (Some sites have //depot/sandbox/myusernamel... for you to make
impromptu branches for such things. It's pretty useful.)

Second step: Where to put a development branch?

It's best to anchor a development branch under "main" if you can:

1. That way, the new work isn't tied to a specific release while under development. If it slips or gets
finished early, you can include it in the most convenient release.
2. Also, it gives you a consistent place to put 'em.

You'll see that we always use named branch specifications for this work. (It makes the integration work
consistent and avoids typos.) An example is below:

Branch: rubydev2002

Owner: eddie

Description:
Created by eddie.

Options: unlocked direct

View:
//depot/main/src/... //depot/devbranches/ruby2002/src/...
-//depot/main/policy.html //depot/devbranches/ruby2002/policy.html
-//depot/main/include/version.h //depot/devbranches/ruby2002/include/version.h

Note the green text. It establishes that a new tree, //depot/devbranches/ruby2002, will pull its initial revisions
from //depot/main when we run:

p4 integrate -b rubydev2002 //...@2002/01/30
p4 submit

So we'll end up with a new tree to work in, populated with a copy of //depot/main from the end of January.
(Jan 30, and since we didn't specify time-of-day, it'll be the first second of the day.)

Third step: Working in a development branch

It's just a place to check in files - have at it.

The one detail is that you want to respect the branch's "goal." If it's a Ruby development branch, don't check in
Perl bug fixes there.

Fourth step: Bringing your work back into normal development

At some point - perhaps several points along the way - you'll want to pull your work back to the parent
codeline/branch. The reverse-integration adds a "-r" to the commands, but otherwise is fairly easy:

p4 integrate -r -b rubydev2002 //...@2002/01/30
p4 resolve

The "resolve" step is straight-forward, but requires a bit of attention. (Don't use "accept theirs" to get the
virtual-copy behavior - for back-integrations, it's usually a poor choice.)

Then, after many regressions and fixing things in your workspace...

p4 submit

Last step: Obsoleting the branch

Once you've reverse-integrated everything, you need to stop using the development branch. ("main" lasts
forever. Development branches shouldn't, so that you can always start with a fresh and blessed copy of the
code for new work in a new branch. It's easier to maintain.)

Some people make the development branch invisible using "p4 protect" ; others delete the files in the
development branch. The first one, with 'p4 protect', is the preferred approach. (It's best to avoid the second
approach - you might accidently integrate the delete operations.)

Comments
A development branch is helpful for many situations - branching the entire tree, a small subtree, or just the

Makefiles or header files. In the partial-tree case, you might map the rest of the production "main" into your
workspace, so that - to you - it looks like a normal source area but meets your specialized needs.

$1d: 0228devbranch.html,v 1.2 2004/04/19 22:11:40 p4 Exp $
© 2004 Perforce Corporation, Inc.

Monthly Scripting Column for March

Tip: Let someone else parse
the data.

'p4 -Ztag' and 'p4 -G' are
good places to start, and
P4Ruby and P4Perl provide
API access via loadable
modules.

Greetings! This continues a series of bulletins, in which we introduce one
of the scripts that will be in a future release.

Today's script

Perl has its detractors, but it's handy.

We present oldclients.pl, a script that finds the clients whose owners aren't in list that you get from "p4
users". (These owners are probably just old users who've been deleted, but the owner field in the client spec
retains the original owner's name. It's no big deal, but offends our sense of order.)

The challenge is to do it with as few calls to 'p4' as possible. We know we need the list of clients and the list
of users, which is two calls to 'p4'. Do we need any more than that?

Parsing output

Most of the commands have an alternate way of invoking them:
p4 -Ztag clients

This returns "tagged" output - this column gave an example of it two months back in some P4Perl code -
and tells Perforce to let you have output that looks like this:

... client heart
... Update 1001544831
... Access 1081295702
. Owner arthur
... Options noallwrite noclobber nocompress unlocked nomodtime normdir
... Root /tmp/home/examples/heart
... Host
... MapState 1
... Description

That's the information for one entry, which means one client workspace. (An empty line separates each
client's data.)

Look at this closely.
1. The first thing on the line is the "tag".

2. the rest of the line is specific to the tag, for example the dates are stored as an integer (seconds since
early 1970, if you must know).

For example, this refers to client "heart", which has no "Host" entry. Arthur's the "Owner".

We've written a small routine, ztag.pl, to parse this for the simplest cases ('p4 files', 'p4 users', etc). It's used
in our script, thusly:

require "ztag.pl";
$p4 = "p4 -Ztag -u zaphod";

$client_tagged_cmd = "$pd users";
@ret = readinZtag($client_tagged_cmd);

foreach $u (@ret) {
SuserName = $u->{'User'};
print "$userName\n";

}

First step: Figuring out what data you need
In this case:

1. For the list of users, run "p4 -Ztag users" ;
2. For the list of clients, run "p4 -Ztag clients".

Take a moment to notice that "p4 -Ztag clients" has a lot of information in the tagged output. The options
are there, so writing a script to report which clients have 'compress' enabled will need one call to 'p4'. (In
fact, the Perforce example database has such a script.)

Second step: Piece together the program

The program is below. The basic flow is:

1. Get the list of users;

2. Get the list of clients (and respective owners, of course);
3. For each of the clients:

4. See if the owner is on the user-list. Print what you find.

Note that we are cautious about how we check that user-list. The Perl construct, "defined", is helpful
because it doesn't create anything as a side-effect of looking.

Reminder: Green text for Perforce hooks.

Task: compare client specs to users, and flag the
client specs owned by users that don't exist anymore.

num of calls to 'p4': 2
status: tested on Win/2000 using perl 5.6

room for optimization/improvement: add getopts call

HHHFHRHFHRHR KW

Copyright 2004 Perforce Corporation, Inc. All rights reserved.

require "ztag.pl";

B o
first call to P4: 'p4 users'

B e e
$client_tagged_cmd = "$pd users";

@ret = readinzZtag($client_tagged cmd);

%userHash = {};
foreach $u (@ret) {
SuserName = $u->{'User'};

SuserHash{$userName} = $u;
}
B o e e
second call to P4: 'p4 clients'
B e e

$client_tagged_cmd = "$p4 clients";
@ret = readinZtag($client_tagged_cmd);

foreach $c (@ret) {
$clientName = $c->{'client'};
SclientOwner = $c->{'Owner'};

if (defined($userHash{$clientOwner})) {
print "$clientName owned by $clientOwner OK\n";
} else {
print "$clientName owned by S$clientOwner ** unknown user **\n";
}
}

Note: all the programs shown in these columns have been written four times: in Perl, in P4Perl, in Python, and in P4Ruby. Look into
the Perforce example database for the other versions. $Id: 0330perl.html,v 1.1 2004/04/18 15:41:00 p4 Exp $
© 2004 Perforce Corporation, Inc.

Monthly Scripting Column for April

Tip: don't like the output? Use
'p4 -G' output as input to your
Python script, and format the
data (or graph it) to your

Greetings! This continues a series of bulletins, in which we introduce one
of the scripts that will be in a future release.

liking.

Today's script

Leverage off other work. We hear this often, and say it in this column a lot, too. The most error-prone
programming I encounter is data validation code. That's the stuff that reads input, validates it, etc. Any
chance I get to use code that someone else has already created (and tested), I'll take.

To that end, there's a facility available to Python programmers for retrieving that data from a Perforce query
without parsing through formatted output. This option, "p4 -G", retrieves Perforce data to be read by a
Python program:

p4 -G clients | python program.py

Today's example retrieves that output using the Python library routine, os.popen.

The "-G" option, which went between p4 and clients, sets the output option to a binary format. That format
is called "marshal", and is a representation of a Python variable or object.

You can read such output with this routine written in Python, which runs a Perforce command and returns
the results of the 'p4' command. The results are easy for the Python programmer to use: an array of 'dict'
objects.

import os
import marshal
def runpd4cmd(pé4cmd):
""" Return the output from the Perforce command,
and assume that the user put the '-G' in the options
to get us marshall output. We always return an array
for the results."""
fd = os.popen(p4cmd, 'r')
results = []
while 1:
try:
d = marshal.load(fd)
results.append(d)
except EOFError:
break
fd.close()
return results # end of runp4cnd

clientList = runp4cmd('p4 -G clients')
for ¢ in clientList:
print c['client']

In the following example, there's a reference to the Options field. (We normally think of it as a list of
strings, since that's how the client spec is formatted when we run 'p4 client.') The first thing is to burst it into
an array, optionList, so that we can search it easily.

import marshal,os, pprint,sys
from readpd4marshal import runpé4cmd

Task: determine which client specs have the option 'nocompress'set.
#

status: tested on Win/2000 using python 2.0

num of calls to 'p4': 1

clientList = runpd4cmd("p4 -G clients")
for ¢ in clientList:

optionList = c['Options'].split(' ")
for o in optionList:

if o == 'compress':
print "$s: compression of data (default)" % c['client']
if o == 'nocompress':

print "%s: *no* compression of data" % c['client']

findnocompress.py

Note: all the programs shown in these columns have been written four times: in Perl, in P4Perl, in Python, and in P4Ruby. Look into
the Perforce example database for the other versions.

$1d: 0430python.html,v 1.1 2004/04/18 15:41:00 p4 Exp $

© 2004 Perforce Corporation, Inc.

Monthly Scripting Column for May

Greetings! This continues a series of bulletins, in which we introduce one
of the scripts that will be in a future release.

Tip: retrieve the data, then
look at it.

Today's script

Back in 1997, there was a thread in the perforce-user mailing list in which customers asked for a script that
tells you what files you need to run "p4 add" on.

Greg Spencer posted a script called p4unknown that did this. (We like the name.) We've written a variant,
below, as an example of P4Ruby; the full source code is here and at the end of this page.

Note for reading any code on this page: Green text is what you'll cut/paste when you make your
own P4Ruby script.

Comments should indicate the flow:

1. Get a list of files from 'p4 fstat //myclient/...'

2. Get a list from a recursive directory list (we use the one provided in a library function, instead of
writing our own or calling the 'find' command - which might not exist on another platform)

3. Compare the two lists. In Ruby, the set intersection operations are built-in, so it's easy!

First step: Setting up P4 object

If you're using P4Ruby, which is the Perforce hook for Ruby, then you'll need to initialize your Perforce
connection:

require "P4"
p4 = P4.new

p4.port = defaultPort if defaultPort != nil
p4.user = defaultUser if defaultUser != nil
p4.client = defaultClient if defaultClient != nil

p4.tagged
p4.parse_forms
p4.connect
begin

end
p4.disconnect

(There will need to be an end somewhere at the end of your Perforce script, as you see in the example.)

Note that we copy this block into most of our P4Ruby programs, setting a default user/port/client in the
argument processing. The other calls are handy because they foist the parsing off to someone else:

1. The 'parse_forms' call make it easy to process client specs in the next step,

2. and the 'tagged' call makes it easy to process the fstat output a bit later.
Second step: retrieving information from a client spec

Note how easy certain things are. "Retrieve a client spec" boils down to this:

cl_spec = p4.fetch_client
cl_name = cl_spec['Client']
cl _root = cl_spec['Root']

If we'd wanted to update it and stash it back into the database, we'd use a call to 'save_client'.

cl _spec = p4.fetch client

cl_name = cl_spec['Client']

cl_spec['Root'] = "/tmp/herman"

puts "Setting root of #{cl_name} to #{cl_spec['Root']}"
ret = p4.save_client(cl_spec)

Third step: getting information about what's mapped in

We chose to run:
ret = p4.run_fstat("//#{cl_name}/...")
This, in turn, runs "p4 fstat /myclient/...".

You might think, why not just run "p4 have" on every file we find in the workspace? For performance
reasons, we choose not to: we'll poll the database once to retrieve data, and then look at data separately.
That will save the expense of building/running many similar, small queries. (Those small queries would in
turn poll the database individually.)

It turns out that "p4 fstat" returns the local pathname as one of the columns/fields in its -Ztag output, which
Python and P4Ruby/P4Perl users see in a hash/dict/associative array. Although "p4 fstat" is not a trivial
command, it will still be less expensive to call a single time, than other commands ("have" and "opened" for
every possible file). Large sites should always examine this closely; it's often worth the ounce of
investigation, or a note to Tech Support, to verify such assumptions.

There's a way to specify pathnames, that describes all the files in the client workspace. It's "//myclient/...",
and it includes those mapped onto my workspace (but not sync'ed) and those opened for add (but not yet
submitted). This is a tidy way to get specific information about the files mapped to your workspace, without
showing clutter that wouldn't be mapped to the local area anyhow. Hence, "p4 fstat /myclient/..." provides a
local pathname for every file that was mapped into the local area. (Aside: The Tech Support folk that T
consulted were happy to help, and pointed out that the /myclient/... version of the syntax helped optimize
some database accesses.)

The results included all files, including those that had been officially deleted, so I added a bit of follow-up
to remove that specific case:

ret = pd.run_fstat("//#{cl_name}/...").delete_if { |r| r['headAction'] == 'delete' }
Fourth step: Figuring out what's on the disk

This really has nothing to do with P4Ruby, just with scripting. We needed a recursive directory list, and

used the library functions to get it:

allFilesPresent = []
Find.find(cl_root) do |f

Find.prune if £ == "." || £ == ".."

allFilesPresent << f if File.stat(f).file?
end

The rule applies: always use library functions. Writing the code to do this will usually be nastier and more

problematic.
Last step: Home free!

From there to the end, it's just a Ruby program. I invite you to look through the rest: it's just grabbing
information from two sources, and the set intersection ("puts This - That") make it easy.

Reminder: Green text for PARuby hooks.

#

num of calls to 'p4': 2

status: tested on Darwin Mac OS X using P4Ruby API
#

require "P4"

require 'getoptlong'
require "find"

verboseOption = false

defaultPort = nil

defaultUser = nil

defaultClient = nil

options = GetoptLong.new(

['--verbose', '-v', GetoptLong::0PTIONAL ARGUMENT],
['--user', '-u', GetoptLong::REQUIRED ARGUMENT],

['--port', '-p', GetoptLong::REQUIRED ARGUMENT],
[
[

[

client', '-c', GetoptLong::REQUIRED_ARGUMENT],
'--help', '-h', GetoptLong::REQUIRED ARGUMENT],
'--quiet', '-q', GetoptLong::REQUIRED_ARGUMENT]

)
options.each do |opt, arg|

case opt
when "--verbose"
verboseOption = true
when "--user"
defaultUser = arg
when "--client"
defaultClient = arg
when "--port"
defaultPort = arg
when "--quiet"
puts "'--quiet' not implemented yet."

when "--help"
puts options.Usage
end
end

p4 = Pd.new

p4.port = defaultPort
p4.user = defaultUser
p4.client = defaultClient
p4.tagged

p4.parse_forms

p4.connect

if defaultPort != nil
if defaultUser != nil
if defaultClient != nil

first call to P4: 'p4 client -o'
cl_spec = p4.fetch_ client

cl name = cl_spec['Client']
cl_root = cl_spec['Root']

second call to P4: 'pd fstat //myclient/...'

ret = pd.run_fstat("//#{cl_name}/...").delete_if { |r| r['headAction'] == 'delete'

at this point, we create two arrays to hold
the filenames:
allFilesPerforce - from "p4 fstat //myclient/..."
allFilesPresent - from "Find.find(cl_root)"
we can use set operations for the tricky stuff, and
it's a great advert for Ruby.

(note that we map the path-separator to be '/', regardless
of platform. Ruby's polite about using '/' everywhere; the
output of "p4 fstat" uses '\' for Windows.)

HHEHRHRHRHFRHRHRHFRH

allFilesPerforce = ret.collect { |r| r['clientFile'].tr('\\', '/') }

allFilesPresent = []
Find.find(cl_root) do |f]|

Find.prune if £ == "." || £ == ".."

allFilesPresent << f if File.stat(f).file?
end

puts "List of files present in workspace, but unknown to Perforce:"
puts (allFilesPresent - allFilesPerforce)

puts "List of files known to Perforce, but not (yet) sync'ed to workspace:"
puts (allFilesPerforce - allFilesPresent)

rescue P4Exception
pd.errors.each { |e| $stderr.puts(e) }
raise
end
p4.disconnect

}

Note: all the programs shown in these columns have been written four times: in Perl, in P4Perl, in Python, and in P4Ruby. Look into

the Perforce example database for the other versions. $Id: 0530ruby.html,v 1.1 2004/04/18 15:41:01 p4 Exp $
© 2004 Perforce Corporation, Inc.

