- <body>
- <html>
- <head>
- <meta http-equiv="Content-Language" content="en-us">
- <meta name="GENERATOR" content="Microsoft FrontPage 5.0">
- <meta name="ProgId" content="FrontPage.Editor.Document">
- <meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
- <title>Mondrian overview</title>
- <style>
- A:link { color:#000066; }
- A:visited { color:#666666; }
- A.clsIncCpyRt,
- A.clsIncCpyRt:visited,
- P.clsIncCpyRt {
- font-weight:normal; font-size:75%; font-family:verdana,arial,helvetica,sans-serif;
- color:black;
- text-decoration:none;
- }
- A.clsLeftMenu,
- A.clsLeftMenu:visited {
- color:#000000;
- text-decoration:none;
- font-weight:bold; font-size:8pt;
- }
- A.clsBackTop,
- A.clsBackTop:visited {
- margin-top:10; margin-bottom:0;
- padding-bottom:0;
- font-size:75%;
- color:black;
- }
- A:hover,
- A.clsBackTop:hover,
- A.clsIncCpyRt:hover,
- A:active { color:blue; }
- A.clsGlossary {
- font-size:10pt;
- color:green;
- }
- BODY { font-size:80%; font-family:verdana,arial,helvetica,sans-serif; }
- BUTTON.clsShowme,
- BUTTON.clsShowme5 {
- font-weight:bold; font-size:11; font-family:arial;
- width:68; height:23;
- position:relative; top:2;
- background-color:#002F90;
- color:#FFFFFF;
- }
- DIV.clsBeta {
- font-weight:bold;
- color:red;
- }
- DIV.clsDocBody { margin-left:10px; margin-right:10px; }
- DIV.clsDocBody HR { margin-top:0; }
- DIV.clsDesFooter { margin:10px 10px 0px 223px; }
- DIV.clsFPfig { font-size:80%; }
- DIV.clsHi {
- padding-left:2em;
- text-indent:-2em
- }
- DIV.clsShowme { margin-bottom:.5em; margin-top:.5em; }
- H1{
- font-size:145%;
- margin-top:1.25em; margin-bottom:0em;
- }
- H2 {
- font-size:135%;
- margin-top:1.25em; margin-bottom:.5em;
- }
- H3 {
- font-size:128%;
- margin-top:1em; margin-bottom:0em;
- }
- H4 {
- font-size:120%;
- margin-top:.8em; margin-bottom:0em;
- }
- H5 {
- font-size:110%;
- margin-top:.8em; margin-bottom:0em;
- }
- H6 {
- font-size:70%;
- margin-top:.6em; margin-bottom:0em;
- }
- HR.clsTransHR {
- position:relative; top:20;
- margin-bottom:15;
- }
- P.clsRef {
- font-weight:bold;
- margin-top:12pt; margin-bottom:0pt;
- }
- PRE {
- background:#EEEEEE;
- margin-top:1em; margin-bottom:1em; margin-left:0px;
- padding:5pt;
- }
- PRE.clsCode, CODE.clsText { font-family:'courier new',courier,serif; font-size:130%; }
- PRE.clsSyntax { font-family:verdana,arial,helvetica,sans-serif; font-size:120%; }
- SPAN.clsEntryText {
- line-height:12pt;
- font-size:8pt;
- }
- SPAN.clsHeading {
- color:#00319C;
- font-size:11pt; font-weight:bold;
- }
- SPAN.clsDefValue, TD.clsDefValue { font-weight:bold; font-family:'courier new' }
- SPAN.clsLiteral, TD.clsLiteral { font-family:'courier new'; }
- SPAN.clsRange, TD.clsRange { font-style:italic; }
- SPAN.clsShowme {
- width:100%;
- filter:dropshadow(color=#000000,OffX=2.5,OffY=2.5,Positive=1);
- position:relative;
- top:-8;
- }
- TABLE { font-size:100%; }
- TABLE.clsStd {
- background-color:#444;
- border:1px none;
- cellspacing:0;
- cellpadding:0
- }
- TABLE.clsStd TH,
- BLOCKQUOTE TH {
- font-size:100%;
- text-align:left; vertical-align:top;
- background-color:#DDD;
- padding:2px;
- }
- TABLE.clsStd TD,
- BLOCKQUOTE TD {
- font-size:100%;
- vertical-align:top;
- background-color:#EEE;
- padding:2px;
- }
- TABLE.clsParamVls,
- TABLE.clsParamVls TD { padding-left:2pt; padding-right:2pt; }
- #TOC { visibility:hidden; }
- UL UL, OL UL { list-style-type:square; }
- .clsHide { display:none; }
- .clsShow { }
- .clsShowDiv {
- visibility:hidden;
- position:absolute;
- left:230px; top:140px;
- height:0px; width:170px;
- z-index:-1;
- }
- .#pBackTop { display:none; }
- #idTransDiv {
- position:relative;
- width:90%; top:20;
- filter:revealTrans(duration=1.0, transition=23);
- }
- /*** INDEX-SPECIFIC ***/
- A.clsDisabled {
- text-decoration:none;
- color:black;
- cursor:text;
- }
- A.clsEnabled { cursor:auto; }
- SPAN.clsAccess { text-decoration:underline; }
- TABLE.clsIndex {
- font-size:100%;
- padding-left:2pt; padding-right:2pt;
- margin-top: 17pt;
- }
- TABLE.clsIndex TD {
- margin:3pt;
- background-color:#EEEEEE;
- }
- TR.clsEntry { vertical-align:top; }
- TABLE.clsIndex TD.clsLetters {
- background-color:#CCCCCC;
- text-align:center;
- }
- TD.clsMainHead {
- background-color:#FFFFFF;
- vertical-align:top;
- font-size:145%; font-weight:bold;
- margin-top:1.35em; margin-bottom:.5em;
- }
- UL.clsIndex { margin-left:20pt; margin-top:0pt; margin-bottom:5pt; }
- LI OL { padding-bottom: 1.5em }
- /*** GALLERY/TOOLS/SAMPLES ***/
- FORM.clsSamples { margin-bottom:0; margin-top:0; }
- H1.clsSampH1 {
- font-size:145%;
- margin-top:.25em; margin-bottom:.25em;
- }
- H1.clsSampHead {
- margin-top:5px; margin-bottom:5px;
- font-size:24px; font-weight:bold; font-family:verdana,arial,helvetica,sans-serif;
- }
- H2.clsSampTitle {
- font-size:128%;
- margin-top:.2em; margin-bottom:0em;
- }
- TD.clsDemo {
- font-size:8pt;
- color:#00319C;
- text-decoration:underline;
- }
- .clsSampDnldMain { font-size:11px; font-family:verdana,arial,helvetica,sans-serif; }
- .clsShowDesc { cursor:hand; }
- A.clsTools {
- color:#0B3586;
- font-weight:bold;
- }
- H1.clsTools, H2.clsTools {
- color:#0B3586;
- margin-top:5px;
- }
- TD.clsToolsHome {
- font-size:9pt;
- line-height:15pt;
- }
- SPAN.clsToolsTitle {
- color:#00319C;
- font-size:11pt; font-weight:bold;
- text-decoration:none;
- }
- /*** DESIGN ***/
- P.cat {
- font-size:13pt;
- color:#787800;
- text-decoration:none;
- margin-top:18px;
- }
- P.author {
- font-size:9pt; font-style:italic;
- line-height:13pt;
- margin-top:10px;
- }
- P.date {
- font-size:8pt;
- line-height:12px;
- margin-top:0px;
- color:#3366FF;
- }
- P.graph1 {
- line-height:13pt;
- margin-top:-10px;
- }
- P.col {
- line-height:13pt;
- margin-top:10px; margin-left:5px;
- }
- P.cal1 {
- text-decoration:none;
- margin-top:-10px;
- }
- P.cal2 {margin-top:-10px; }
- P.photo { font-size:8pt; }
- /*** DOCTOP ***/
- #tblNavLinks A {
- color:black;
- text-decoration:none;
- font-family:verdana,arial,helvetica,sans-serif;
- }
- #lnkShowText, #lnkSyncText, #lnkSearchText, #lnkIndexText { font-size:8pt; font-weight:bold; }
- #lnkPrevText, #lnkNextText, #lnkUpText { font-size:7.5pt; font-weight:normal; }
- DIV.clsBucketBranch {
- margin-left:10px; margin-top:15px; margin-bottom:-10pt;
- font-style:italic; font-size:85%;
- }
- DIV.clsBucketBranch A,
- DIV.clsBucketBranch A:link,
- DIV.clsBucketBranch A:active,
- DIV.clsBucketBranch A:visited { text-decoration:none; color:black; }
- DIV.clsBucketBranch A:hover { color:blue; }
- /*** SDK, IE4 ONLY ***/
- DIV.clsExpanded, A.clsExpanded { display:inline; color:black; }
- DIV.clsCollapsed, A.clsCollapsed { display:none; }
- SPAN.clsPropattr { font-weight:bold; }
- #pStyles, #pCode, #pSyntax, #pEvents, #pStyles {display:none; text-decoration:underline; cursor:hand; }
- /*** jhyde added ***/
- CODE { color:maroon; font-family:'courier new' }
- DFN { font-weight:bold; font-style:italic; }
- </style>
- </head>
- <!--
- This sentence is here to fool javadoc (which is looking for a period, and otherwise finds one
- inside one of our header tables).
- -->
- <table border="1" class="clsStd" width="100%">
- <tr>
- <td colspan="2"><a href="index.html">Top</a> |
- <a href="http://public.perforce.com/guest/julian_hyde/mondrian/doc/index.html">Web home</a> |
- <a href="http://sourceforge.net/projects/mondrian/">SourceForge home</a></td>
- <td width="0" align="right" rowspan="2">
- <a href="http://sourceforge.net"><img src="http://sourceforge.net/sflogo.php?group_id=35302&type=1" width="88" height="31" border="0" alt="SourceForge.net Logo"></a></td>
- </tr>
- <tr>
- <td colspan="2"><em>$Id: //guest/paul_dymecki/mondrian/doc/overview.html#1 $</em></td>
- </tr>
- <tr>
- <td colspan="3"><em>(C) Copyright 2002, Kana Software, Inc. and others</em></td>
- </tr>
- <tr>
- <th align="right" width="30%">Author</th>
- <td colspan="2">Julian Hyde (<a href="mailto:julian.hyde@mail.com">julian.hyde@mail.com</a>)</td>
- </tr>
- <tr>
- <th align="right" width="30%">Created</th>
- <td colspan="2">February 13<sup><font face="Verdana">th</font></sup>, 2002</td>
- </tr>
- </table>
- <h1>Mondrian overview</h1>
- <p>Mondrian is an OLAP engine written in Java. It executes queries written in
- the MDX language, reading data from a relational database (RDBMS), and presents
- the results in a multidimensional format via a Java API. Let's go into what that
- means.</p>
- <h2>Online Analytical Processing</h2>
- <p><dfn><font face="Verdana">Online Analytical Processing (OLAP)</font></dfn>
- means analysing large quantities of data in real-time. Unlike Online Transaction
- Processing (OLTP), where typical operations read and modify individual and small
- numbers of records, OLAP deals with data in bulk, and operations are generally
- read-only. The term 'online' implies that even though huge quantities of data
- are involved typically many millions of records, occupying several gigabytes
- the system must respond to queries fast enough to allow an interactive
- exploration of the data. As we shall see, that presents considerable technical
- challenges.</p>
- <p>OLAP employs a technique called <dfn><font face="Verdana">Multidimensional Analysis</font></dfn>. Whereas a
- relational database stores all data in the form of rows and columns, a
- multidimensional dataset consists of <dfn><font face="Verdana">axes</font></dfn> and
- <dfn><font face="Verdana">cells</font></dfn>. Consider the dataset</p>
- <blockquote>
- <table border="0" style="clsStd" id="AutoNumber1" cellpadding="2">
- <tr>
- <td nowrap><i>Year</i></td>
- <th align="right" colspan="2">2000</th>
- <th align="right" colspan="2">2001</th>
- <th align="right" colspan="2">Growth</th>
- </tr>
- <tr>
- <td nowrap><i>Product</i></td>
- <th align="right">Dollar sales</th>
- <th align="right">Unit sales</th>
- <th align="right">Dollar sales</th>
- <th align="right">Unit sales</th>
- <th align="right">Dollar sales</th>
- <th align="right">Unit sales</th>
- </tr>
- <tr>
- <th nowrap>Total</th>
- <td align="right">$17,165</td>
- <td align="right">$2,825</td>
- <td align="right">$18,867</td>
- <td align="right">3,163</td>
- <td align="right">10%</td>
- <td align="right">12%</td>
- </tr>
- <tr>
- <th nowrap> Books</th>
- <td align="right">$12,845</td>
- <td align="right">956</td>
- <td align="right">$14,562</td>
- <td align="right">1,121</td>
- <td align="right">13%</td>
- <td align="right">17%</td>
- </tr>
- <tr>
- <th nowrap> Fiction</th>
- <td align="right">$1,341</td>
- <td align="right">424</td>
- <td align="right">$1,202</td>
- <td align="right">380</td>
- <td align="right">16%</td>
- <td align="right">37%</td>
- </tr>
- <tr>
- <th nowrap> Non-fiction</th>
- <td align="right">$1,412</td>
- <td align="right">400</td>
- <td align="right">$1,224</td>
- <td align="right">386</td>
- <td align="right">11%</td>
- <td align="right">2%</td>
- </tr>
- <tr>
- <th nowrap> Magazines</th>
- <td align="right">$2,753</td>
- <td align="right">824</td>
- <td align="right">$2,426</td>
- <td align="right">766</td>
- <td align="right">-12%</td>
- <td align="right">-7%</td>
- </tr>
- <tr>
- <th nowrap>— Greetings cards</th>
- <td align="right">$1,567</td>
- <td align="right">1,045</td>
- <td align="right">$1,879</td>
- <td align="right">1,276</td>
- <td align="right">20%</td>
- <td align="right">22%</td>
- </tr>
- </table>
- </blockquote>
- <p>The rows axis consists of the members 'All products', 'Books', 'Fiction', and
- so forth,
- and the columns axis consists of the cartesian product of the years '2000' and
- '2001', and the <font face="Verdana">calculation</font> 'Growth', and the
- <dfn>measures</dfn> 'Unit sales' and 'Dollar sales'. Each cell
- represents the sales of a product category in a particular year; for example,
- the dollar sales of Magazines in 2001 were $2426.</p>
- <p>This is a richer view of the data than would be presented by a relational
- database. The members of a multidimensional dataset are not always values
- from a relational column. 'Total', 'Books' and 'Fiction' are members at
- successive levels in a <dfn>hierarchy</dfn>, each of
- which is rolled up to the next. And even though it is alongside the years '2000'
- and '2001', 'Growth' is
- a <dfn>calculated member</dfn>, which introduces a
- formula for computing cells from other
- cells.</p>
- <p>The dimensions used here products, time, and measures are just three of
- many dimensions by which the dataset can be categorized and filtered. The
- collection of dimensions, hierarchies and measures is called a <dfn>
- <font face="Verdana">cube</font></dfn>.</p>
- <p>I hope I have demonstrated that multidimensional is above all a way of <em>
- <font face="Verdana">presenting</font></em> data. Although some multidimensional
- databases <em><font face="Verdana">store</font></em> the data in multidimensional format,
- I shall argue that it is simpler to store the data in relational format. It's
- time to look at the architecture of an OLAP system.</p>
- <h2>Architecture</h2>
- <p>A Mondrian OLAP System consists of four layers; working from the eyes of the
- end-user to the bowels of the data center, these are the presentation layer, the
- calculation layer, the aggregation layer, and the storage layer.</p>
- <p>The <dfn><font face="Verdana">presentation layer</font></dfn> determines what
- the end-user sees on his or her monitor, and how he or she can interact to ask
- new questions. There are many ways to present multidimensional datasets,
- including pivot tables (an interactive version of the table shown above), pie,
- line and bar charts, and advanced visualization tools such as clickable maps and
- dynamic graphics. These might be written in Swing or JSP, charts rendered in
- JPEG or GIF format, or transmitted to a remote application via XML. What all of
- these forms of presentation have in common is the multidimensional 'grammar' of
- dimensions, measures and cells in which the presentation layer asks the question
- is asked, and OLAP server returns the answer.</p>
- <p>The second layer is the <dfn><font face="Verdana">calculation layer</font></dfn>.
- The calculation layer parses, validates and executes MDX queries. A query is
- evaluted in multiple phases. The axes are computed first, then the values of the
- cells within the axes. For efficiency, the calculation layer sends cell-requests
- to the aggregation layer in batches. A <dfn>
- <font face="Verdana">query transformer</font></dfn> allows the application to
- manipulate existing queries, rather than building an MDX statement from scratch
- for each request. And <dfn>
- <font face="Verdana">metadata</font></dfn> describes the the dimensional model,
- and how it maps onto the relational model.</p>
- <p>The third layer is the <dfn><font face="Verdana">aggregation layer</font></dfn>.
- An aggregation is a set of measure values ('cells') in memory, qualified by a
- set of dimension column values. The calculation layer sends requests for sets of
- cells. If the requested cells are not in the cache, or derivable by rolling up
- an aggregation in the cache, the aggregation manager and sends a request to the
- storage layer.</p>
- <p>The <dfn><font face="Verdana">storage layer</font></dfn> is an RDBMS. It is
- responsible for providing aggregated cell data, and members from dimension
- tables. I describe <a href="#Storage_and_aggregation_strategies">below</a> why I
- decided to use the features of the RDBMS rather than developing a storage system
- optimized for multidimensional data.</p>
- <p>All four of these components can exist on the same machine. Layers 2 and 3,
- which comprise the Mondrian server, must be on the same machine. The storage
- layer could be on another machine, accessed via remote JDBC connection. In a
- multi-user system, the presentation layer would exist on each end-user's machine
- (except in the case of JSP pages generated on the server).</p>
- <h3><a name="Storage_and_aggregation_strategies">Storage and aggregation
- strategies</a></h3>
- <p>OLAP Servers are generally categorized according to how they store their
- data:</p>
- <ul>
- <li>A <font face="Verdana"><dfn>MOLAP (multidimensional OLAP)</dfn></font>
- server stores all of its data on disk in structures optimized for
- multidimensional access. Typically, data is stored in dense arrays, requiring
- only 4 or 8 bytes per cell value.</li>
- <li>A <font face="Verdana"><dfn>ROLAP (relational OLAP)</dfn></font> server
- stores its data in a relational database. Each row in a fact table has a
- column for each dimension and measure.</li>
- </ul>
- <p>Three kinds of data need to be stored: fact table data (the transactional
- records), aggregates, and dimensions.</p>
- <p>MOLAP databases store fact data in multidimensional format, but if there are
- more than a few dimensions, this data will be sparse, and the multidimensional
- format does not perform well. A <font face="Verdana"><dfn>HOLAP (hybrid OLAP)</dfn></font>
- system solves this problem by leaving the most granular data in the relational
- database, but stores aggregates in multidimensional format.</p>
- <p>Pre-computed aggregates are necessary for large data sets, otherwise certain
- queries could not be answered without reading the entire contents of the fact
- table. MOLAP aggregates are often an image of the in-memory data structure,
- broken up into pages and stored on disk. ROLAP aggregates are stored in tables.
- In some ROLAP systems these are explicitly managed by the OLAP server; in other
- systems, the tables are declared as materialized views, and they are implicitly
- used when the OLAP server issues a query with the right combination of columns
- in the <code>group by</code> clause.</p>
- <p>The final component of the aggregation strategy is the cache. The cache holds
- pre-computed aggregations in memory so subsequent queries can access cell values
- without going to disk. If the cache holds the required data set at a lower level
- of aggregation, it can compute the required data set by rolling up.</p>
- <p>The cache is arguably the most important part of the aggregation strategy
- because it is <em><font face="Verdana">adaptive</font></em>. It is difficult to
- choose a set of aggregations to pre-compute which speed up the system without
- using huge amounts of disk, particularly those with a high dimensionality or if
- the users are submitting unpredictable queries. And in a system where data is
- changing in real-time, it is impractical to maintain pre-computed aggregates. A
- reasonably sized cache can allow a system to perform adequately in the face of
- unpredictable queries, with few or no pre-computed aggregates.</p>
- <p>Mondrian's aggregation strategy is as follows:</p>
- <ul>
- <li>Fact data is stored in the RDBMS. Why develop a storage manager when the
- RDBMS already has one?</li>
- <li>Read aggregate data into the cache by submitting <code>group by</code>
- queries. Again, why develop an aggregator when the RDBMS has one?</li>
- <li><em><font face="Verdana">If</font></em> the RDBMS supports materialized
- views, <em><font face="Verdana">and </font></em>the database administrator
- chooses to create materialized views for particular aggregations, then
- Mondrian will use them implicitly. Ideally, Mondrian's aggregation manager
- should be aware that these materialized views exist and that those particular
- aggregations are cheap to compute. If should even offer tuning suggestings to
- the database administrator.</li>
- </ul>
- <p>The general idea is to delegate unto the database what is the database's.
- This places additional burden on the database, but once those features are added
- to the database, all clients of the database will benefit from them.
- Multidimensional storage would reduce I/O and result in faster operation in some
- circumstances, but I don't think it warrants the complexity at this stage.</p>
- <p>A wonderful side-effect is that because Mondrian requires no storage of its
- own, it can be installed by adding a JAR file to the class path and be up and
- running immediately. Because there are no redundant data sets to manage, the
- data-loading process is easier, and Mondrian is ideally suited to do OLAP on
- data sets which change in real time.</p>
- <p><i>Note to self</i>: The cache manager ought to distinguish between data which is being
- pulled into the cache to be rolled up immediately into some other aggregation,
- and an aggregation which is explicitly needed.</p>
- <h2>Components</h2>
- <h3>Query transformer</h3>
- <p>See {@link mondrian.olap.Parser}.</p>
- <h3>Metadata</h3>
- <p>It is represented as an XML file. The metadata is loaded into memory the
- first time you reference a dimensional model. You can modify the model at
- runtime by creating instances of classes such as <code>{@link
- mondrian.rolap.RolapHierarchy}</code>.</p>
- <h3>Calculation layer</h3>
- <p><i>todo</i>: See {@link mondrian.olap.Query} and {@link mondrian.olap.Result}.</p>
- <p><i>todo</i>: The <code>package {@link mondrian.rolap}</code>. is the one and
- only implementation of the API. The DriverManager (<code>class {@link
- mondrian.olap.DriverManager}</code>) acts as class-factory.</p>
- <p><i>todo</i>: How members are calculated...</p>
- <p><i>todo</i>: How aggregations are batched...</p>
- <p><i>todo</i>: MDX functions. See <a href="#User_defined_functions">user-defined functions</a>.</p>
- <h3>Aggregation manager</h3>
- <p>Aggregations are based upon the relational model: as far as the aggregation
- manager is concerned, there is no relationship between the columns <code>city</code>
- and <code>state</code>. This means that all roll-ups are the same: you just drop
- a column. Consider the 3 roll-ups possible by dropping a column from the
- aggregation {<code>gender</code>, <code>city</code>, <code>state</code>}:
- dropping <code>gender</code> is equivalent to removing the <code>[Gender]</code>
- dimension; dropping <code>city</code> is equivalent to rolling up to a higher
- level in the <code>[Geography]</code> hierarchy; and dropping <code>state</code>
- is not even allowed in the dimensional model (no, sorry, you can't ask about
- products sold in a cities called 'Portland'). This approach will also allow us
- to implement 'drill anywhere'.</p>
- <p>An aggregation is defined by a search condition, for example, <code>{state in
- ('CA', 'OR', 'WA'), city = <i>any</i>, gender = 'M', measure = 'Unit sales'}</code>.
- The <i><code>any</code></i> value is important; if we had asked for a specific
- set of cities, we would not later be able to roll-up by dropping the <code>city</code>
- column.</p>
- <p>The caching strategy is to throw out the aggregation with the lowest
- cost/benefit ratio. The 'benefit' of an item is the effort it took to produce
- (effort which it is saving future queries) multiplied by its 'usefulness' which
- declines exponentially if it is not used over time. The 'cost' of an item is its
- size.</p>
- <h2>How do I use Mondrian in my application?</h2>
- <p>Something like this.</p>
- <ol>
- <li>Install the JAR.</li>
- <li>Create an XML mapping file.</li>
- <li>Create a Mondrian connection, specifying the JDBC URL of the RDBMS, and the
- URL of the mapping file.</li>
- <li>Execute an MDX statement.</li>
- <li>Render it. (There are currently no presentation tools which can render it.)</li>
- <li>In response to user actions such as drill-down and pivot, use the query
- transformer services to transform the query, and re-execute.</li>
- </ol>
- <h2>Why doesn't Mondrian use a standard API?</h2>
- <p>Because there isn't one. MDX is a component of Microsoft's OLE DB for OLAP
- standard which, as the name implies, only runs on Windows. Mondrian's API is
- fairly similar in flavor to ADO MD (ActiveX Data Objects for Multidimensional),
- a API which Microsoft built in order to make OLE DB for OLAP easier to use.</p>
- <p>XML for Analysis is pretty much OLE DB for OLAP expressed in Web Services
- rather than COM, and therefore seems to offer a platform-neutral standard for
- OLAP, but take-up seems to be limited to vendors who supported OLE DB for OLAP
- already.</p>
- <p>The other query vendors failed to reach consensus several years ago with the
- OLAP Council API, and are now encamped on the JOLAP specification.</p>
- <p>I plan to provide a JOLAP API to Mondrian as soon as JOLAP is available.</p>
- <h2>How does Mondrian's dialect of MDX differ from MSOLAP's?</h2>
- <p>Not very much.</p>
- <ol>
- <li>The <code>StrToSet()</code> and <code>StrToTuple()</code> functions take
- an extra parameter.</li>
- <li>Parsing is case-sensitive.</li>
- <li>Pseudo-functions <code>Param()</code> and <code>ParamRef()</code> allow
- you to create parameterized MDX statements.</li>
- </ol>
- <h2>How can Mondrian be extended?</h2>
- <p><i>todo</i>: <a name="User_defined_functions">User-defined functions</a></p>
- <p><i>todo</i>: Cell readers</p>
- <p><i>todo</i>: Member readers</p>
- <h2>Can Mondrian handle large datasets?</h2>
- <p>Yes, if your RDBMS can. We delegate the aggregation to the RDBMS, and if your
- RDBMS happens to have materialized group by views created, your query will fly.
- And the next time you run the same or a similar query, that will really fly,
- because the results will be in the aggregation cache.</p>
- <h2>Where is Mondrian going in the future?</h2>
- <ol>
- <li>Presentation layer</li>
- <li>Complete implementation of MDX (not many functions implemented yet)</li>
- <li>Tuning</li>
- <li>Support JOLAP API.</li>
- </ol>
- <h2>Mondrian is fantastic! How can I possibly thank you?</h2>
- <p>Please send me an email, and let me know what you liked and didn't like about
- it. If you can think of ways that Mondrian can be improved, roll up your sleeves
- and help make it better. If you use Mondrian in your application, consider
- sharing your work so that everyone can use it.</p>
- <b>
- <table border="1" width="100%" class="clsStd">
- <tr>
- <td>End <i>$Id: //guest/paul_dymecki/mondrian/doc/overview.html#1 $</i></td>
- </tr>
- </table>
- <p> </p>
- </b>
- </html>
- </body>
# | Change | User | Description | Committed | |
---|---|---|---|---|---|
#1 | 1820 | Paul Robert Dymecki | mondrian: Integrate latest from //guest/julian_hyde | 23 years ago | |
//guest/julian_hyde/mondrian/doc/overview.html | |||||
#3 | 1501 | Julian Hyde |
Mondrian: generate MetaDef.java; fix home page link. |
23 years ago | |
#2 | 1460 | Julian Hyde | mondrian: Add home page. | 23 years ago | |
#1 | 1459 | Julian Hyde | mondrian: Add overview. | 23 years ago |